
533

Ecology, 80(2), 1999, pp. 533–537
q 1999 by the Ecological Society of America

KEY-FACTOR/KEY-STAGE ANALYSIS FOR LIFE TABLE DATA
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Abstract. Organisms are subjected to various mortality factors, each of which causes
different mortality in each life stage of the organism. The factor that contributes most to
the population fluctuation should be called the ‘‘key factor.’’ Similarly, the stage that
contributes most to the population fluctuation should be called the ‘‘key stage.’’ The con-
ventional key-factor analyses divide the variation of the total mortality through all stages,
K, into the variation of the mortality in the ith stage, ki. These analyses identify the key
stage but do not identify the key factor, unless each stage is subjected to only a single
mortality factor. Hence, the conventional key-factor analyses should be called key-stage
analyses. A ‘‘key-factor/key-stage analysis’’ is proposed by integrating the conventional
key-factor analyses and ANOVA, emphasizing the importance of discriminating between
the key factor and the key stage. This analysis identifies the key factor, the key stage, and
the combination of factor and stage that is most influential in determining the fluctuation
of total mortality.

Key words: division of variance; fluctuation of mortality; key-factor/key-stage analysis; life stage;
life table; mortality factor; population fluctuation.

INTRODUCTION

Organisms are subjected to various mortality factors,
such as natural enemies and climate, each of which
causes different mortality in each life stage of the or-
ganism. Some factors may affect the mortality of both
the egg stage and the larval stage, while other factors
may affect only the larval stage. The factor that con-
tributes most to the population fluctuation should be
called the ‘‘key factor’’ (Morris 1959). Similarly, the
stage that contributes most to the population fluctuation
should be called the ‘‘key stage.’’ To learn why pop-
ulation density varies in place as well as in time, life
tables should be compiled simultaneously for a number
of different environments. These data could be used to
show which factor is the key factor, which stage is the
key stage, and through which stage the key factor exerts
its greatest effect.

It generally is laborious to examine various envi-
ronmental factors simultaneously. For this reason, Mor-
ris (1959) proposed a ‘‘single-factor analysis.’’ In this
analysis, only the mortality caused by a single factor,
which is suspected to be a key factor, is analyzed. If
the variability of mortality caused by this factor is suf-
ficiently large, it can be confirmed that the factor is a
key factor. Morris applied this analysis to the percent-
age of parasitism for a black-headed budworm, Acleris
variana (Fern.). However, the mortality caused by a
specific factor is not always measurable. In many cases,
the mortality of each life stage can only be estimated,
since the mortality may be caused by a mixture of
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several factors. If the single-factor analysis were ap-
plied on a stage-by-stage basis, the analysis would
identify the key stage, but would not identify the key
factor, unless the stage is subjected to only a single
mortality factor. Subsequent to Morris’s work, several
authors improved the single-factor analysis under the
terminology of ‘‘key-factor analysis’’ (Varley and
Gradwell 1960, Mott 1966, Metcalfe 1972, Smith 1973,
Podoler and Rogers 1975, Manly 1977). In these stud-
ies, however, factors and stages were confused, and
this confusion seems to remain today.

In this paper, I emphasize the importance of discrim-
inating between the key factor and the key stage. First,
I discuss the conventional key-factor analyses that
should be called ‘‘key-stage analyses.’’ Second, I dis-
cuss the utilization of ANOVA as a key-factor analysis.
Third, I propose a ‘‘key-factor/key-stage analysis’’ by
integrating the conventional key-factor analysis and
ANOVA. The effectiveness of the analysis is demon-
strated by using the life table data of Pieris rapae cru-
civora Boisduval (Lepidoptera, Pieridae).

KEY STAGE ANALYSIS

The conventional key-factor analyses will be sum-
marized as follows. Let Nij be the population entering
the ith life stage of the jth observation. Let kij be the
mortality of the ith life stage of the jth observation,
defined as the negative logarithm of the survival rate:
kij 5 2log(Ni11, j/Nij), (i 5 1, 2, . . . , s; j 5 1, 2, . . . ,
n). Let Kj be the mortality through all stages, i.e., Kj

5 kij. Here, ‘‘mortality’’ will be used in a broadsSi51

sense to cover any loss in a given population, whether
this loss results from direct mortality, from dispersal,
or from reduced fecundity (Morris 1957). The mean of
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kij is denoted by k̄i 5 (1/n) kij; the mean of Kj isnSj51

denoted by K̄ 5 (1/n) Kj. Also, the variance of Kj
nSj51

is denoted by V(K ) 5 [1/(n 2 1)] (Kj 2 K̄ )2, thenSj51

variance of kij by V(ki) 5 [1/(n 2 1)] (kij 2 k̄i)2,nSj51

and the covariance between kij and khj by cov(ki, kh) 5
[1/(n 2 1)] (kij 2 k̄i)(khj 2 k̄h). The relative con-nSj51

tribution of the ith-stage mortality to the fluctuation of
the total mortality can be evaluated by comparing the
deviation of the ith-stage mortality, (kij 2 k̄i), and the
deviation of the total mortality, (Kj 2 K̄ ). Varley and
Gradwell (1960) plotted the deviations of mortality on
a graph and visually compared the synchronization of
the fluctuation.

Several other methods enabling a quantitative com-
parison are based on the division of the variance into
components. Mott (1966) divided V(K ) into V(ki) and
cov(ki, kh):

s(i±g)s s

V(K) 5 V(k ) 1 cov(k , k ). (1)O O Oi i g
i51 i51 g51

This division elucidates the influence of the interaction
between the mortality of different stages, as well as the
influence of each stage. However, the interpretation of
Eq. 1 is not straightforward, since the effect of each
stage is scattered among many terms. Smith (1973) and
Harcourt (1986) bundled the terms of Eq. 1 symmet-
rically among stages:

s(i±g)s

V(K) 5 V(k ) 1 cov(k , k ) (2)O Oi i g[ ]i51 g51

which can be expressed in a simpler form given by

s

V(K) 5 cov(k , K). (3)O i
i51

Podoler and Rogers (1975) used the regression coef-
ficient of kij against Kj to evaluate the influence of kij

on Kj. Their method is identical to the division used
by Smith (1973), since the regression coefficients are
proportional to cov(ki, K ). These kinds of analyses di-
vide the variance into stages, but do not divide it into
factors, unless the stage is subjected to only a single
mortality factor. Therefore, I call these analyses key-
stage analyses instead of key-factor analyses.

KEY-FACTOR ANALYSIS

The deviation of the total mortality, (Kj 2 K̄ ), which
is influenced by the mortality of each stage, is also
influenced by various environmental factors, e.g., rain-
fall, temperature, food quality, and natural enemies. As
an illustration, imagine the following field conditions
of four plots ( j 5 1, 2, 3, 4): j 5 1, higher rainfall and
higher temperature; j 5 2, higher rainfall and lower
temperature; j 5 3, lower rainfall and higher temper-
ature; j 5 4, lower rainfall and lower temperature. As-
sume that (Kj 2 K̄ ) increases by the increment B1 when
the rainfall is higher and that (Kj 2 K̄ ) increases by
the increment B2 when the temperature is higher.

Knowledge of the effects of a variation of the envi-
ronmental factors on the variation of Kj is desired.
Hence, the sum of the effects of each environmental
factor should be defined as zero. Furthermore, assume
that (Kj 2 K̄ ) decreases by the decrement B1 when the
rainfall is lower and that (Kj 2 K̄ ) decreases by the
decrement B2 when the temperature is lower.

The deviation of the total mortality, (Kj 2 K̄ ), will
be further subjected to variabilities that cannot be ex-
plained by known factors. Hence, (Kj 2 K̄ ) should be
written as follows:

¯K 2 K 5 B 1 B 1 U1 1 2 1

¯K 2 K 5 B 2 B 1 U2 1 2 2

¯K 2 K 5 2B 1 B 1 U3 1 2 3

¯K 2 K 5 2B 2 B 1 U (4)4 1 2 4

where Uj are the unknown variabilities. It is convenient
to express these equations by a matrix form:

¯K 2 K 1 1 U     1 1

¯K 2 K 1 21 B U    2 1 2
5 1 . (5)     1 2¯K 2 K 21 1 B U3 2 3    

¯K 2 K 21 21 U     4 4

Generally, the deviation (Kj 2 K̄ ) can be expressed by

K 2 K̄ 5 XB 1 U (6)

where K is a column vector with elements Kj, K̄ is a
column vector with elements K̄, X is a design matrix
determining the arrangement of environmental factors,
B is a column vector expressing the effects of factors,
and U is a column vector with elements Uj. It is being
assumed that the number of observations is the same
for all combinations of the levels of factors.

To identify the key factor, I divide the variance, V(K )
5 1/(n 2 1) (Kj 2 K̄ )2, into factors. A simplenSj51

principle to achieve the division is to use the sum of
squares in the ANOVA table. In the performance of
the ANOVA, treat each factor as an independent vari-
able, and treat K, (not K 2 K̄), as a dependent variable.
Then, the column of the sum of squares in the ANOVA
table gives a partition of (Kj 2 K̄ )2. To clarify thenSj51

relation between the ANOVA and the conventional
key-factor analyses in the next section, Xh is defined
as the X matrix in which only the columns related to
the hth factor are included and the other columns are
replaced by zeros (h 5 1, 2, . . . , f ). For the example,
these matrices are as follows:

1 0 0 1   

1 0 0 21  
X 5 X 5   1 2

21 0 0 1  
21 0 0 21   

and
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TABLE 1. Key-factor, key-stage table for the mortality of larvae of P. rapae crucivora.

Factor df

Instar

1st 2nd 3rd 4th Total†

Block
Spacing
Season
Spacing 3 season
Unknown variability

3
1
1
1
9

2114
56
29
67

4

105
276
222
229
241

272
172

216
62

361

423
181
575

13
742

686
332
565
114

1066
Total‡ 15 42 264 850 1933 2762

Notes: The variance of the total mortality, V(K ), is divided into five factors 3 four stages.
All values are multiplied by 104 to facilitate the comparison.

† This column shows which factor is the key factor.
‡ This row shows which stage is the key stage.

f

X 5 X . (7)O h
h51

Then, the sum of squares in the ANOVA table is ex-
pressed by (XhB̂)9(XhB̂), and the residual sum of
squares is expressed by Û9Û, where a hat (^) indicates
estimation obtained by ANOVA and a prime (9) indi-
cates a transposition (see Searle 1971). Hence, V(K)
can be expressed as

f1 1ˆ ˆ ˆ ˆV(K) 5 (X B)9(X B) 1 [U9U]. (8)O h h[ ]n 2 1 n 2 1h51

Eq. 8 divides the variance into ( f 1 1) components
separated by brackets, each corresponding to a factor
and unknown variability, where f is the total number
of factors. Hence, the relative contribution of each fac-
tor can be evaluated by comparing these ( f 1 1) terms.
This kind of analysis should be called key-factor anal-
ysis, since it divides the variance into factors.

KEY-FACTOR/KEY-STAGE ANALYSIS

The key-stage analysis given by Eq. 3 and the key-
factor analysis given by Eq. 8 can be combined in the
following manner. I have considered the effects of en-
vironmental factors on the deviation of the total mor-
tality (Kj 2 K̄ ). In an actual situation, however, the
environmental factors affect each of the life stages. To
take this into account, I express the effects of envi-
ronmental factors on the ith stage by

ki 2 k̄i 5 Xbi 1 ui (9)

where ki is a column vector with elements kij, k̄i is a
column vector with elements k̄i, bi is a column vector
expressing the effects of factors in the ith stage, and
ui is a column vector expressing the unknown vari-
ability in the ith stage. As a logical consequence, U 5

ui and B 5 bi. To evaluate the effect of eachs sS Si51 i51

combination of factor 3 stage on V(K ), the variance
and covariance of ki in Eq. 2 should be divided into
factors. A simple principle to achieve the division is
to use the sum of squares and sum of products calcu-
lated in MANOVA. The ki, (not ki 2 k̄i), of the different
stages are to be treated as different variables in the

performance of MANOVA. Then, the variance is ex-
pressible as

fs s1
V(K) 5 (X b̂ )9(X b̂ )O O O h i h m[ ]n 2 1 i51 h51 m51

s s1
1 û9û (10)O O i m[ ]n 2 1 i51 m51

where (Xhb̂i)9(Xhb̂m) and û9iûm are the elements of the
SSP matrix (sum of squares and products matrix) cal-
culated in MANOVA (see Chatfield and Collins 1980).
Eq. 10 divides the variance into s( f 1 1) components,
separated by brackets, each corresponding to a com-
bination of factors 3 stages. These s( f 1 1) terms may
be easily obtained by using statistical software such as
SAS, JMP, or Systat; (Xhb̂i)9(Xhb̂m) is obtained bysSm51

summing the elements of the ith column of the SSP
matrix of the hth factor; and û9iûm is obtained bysSm51

summing the elements of the ith column of the error
SSP matrix. In the usual MANOVA, the SSP matrix is
used to test the effects of factors. However, such kinds
of statistical tests are not of interest at present, since
the manner in which the total variance is attributed to
factors and stages is under investigation.

EXAMPLE

The effectiveness of this method will be demonstrat-
ed using the data obtained by the experiment studying
the effect of plant spacing on the mortality of P. rapae
crucivora (Yamamura and Yano, unpublished data).
The data are listed in the Appendix so that readers can
verify the calculations. In this experiment, cabbage
seedlings were planted at two levels of plant spacing:
2 3 2 m (sparse) and 0.5 3 0.5 m (dense). The ex-
perimental plots, each 10 3 10 m, were replicated by
four blocks, and the number of the first, second, third,
fourth, and fifth instar larvae were estimated in each
plot. The experiment was repeated twice in 1989, start-
ing on May 25 (spring experiment) and on July 12
(summer experiment).

The result of the analysis is expressed in a ‘‘key-
factor/key-stage table,’’ with columns indicating stages
and rows indicating factors (Table 1). The ‘‘Total’’ col-
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umn lists the sum of squares of each factor given by
Eq. 8, showing the degree of influence due to each
factor in determining the fluctuation of total mortality.
The largest component is the unknown variability
(1066) in this example. The ‘‘Total’’ row lists the result
of the key-stage analysis given by Eq. 3, showing the
degree of influence due to each life stage in determining
the fluctuation of total mortality. The mortality of the
fourth-instar larvae is most influential (1933) in this
example. Furthermore, the key-factor/key-stage table
shows the combination of factor 3 stage that is influ-
ential in determining the total mortality. The largest
source of the variance of K is the effect of unknown
variability through the mortality of the fourth-instar
larvae (742) in this example. The variation in season
also significantly increases the variance of K through
the mortality of the fourth-instar larvae (575). The ef-
fects of block, i.e., the effects of spatial variation,
through the mortality of the third- and fourth-instar
larvae are also relatively large (272 and 423, respec-
tively).

DISCUSSION

The results of the key-factor/key-stage analysis and
those of the conventional key-factor analyses may be
sometimes contradictory, since the key-factor/key-
stage analysis distinguishes between the cause and the
effect. For example, the percentage of parasitism that
is directly measured in field is not a factor in the key-
factor/key-stage analysis; it is an effect caused by fac-
tors such as the number of parasites. As an illustration,
consider a situation in which the activity of parasites
is highly influenced by the weather condition (Kiritani
and Hokyo 1970, for example). If the weather condition
fluctuates widely, the percentage of parasitism fluctu-
ates widely. In this case, the conventional key-factor
analyses identify the parasitism as the key factor. In
contrast, the key-factor/key-stage analysis identifies
the weather condition as the key factor and states that
the variability of weather condition increases the vari-
ance of K through parasitism. Thus, if the environ-
mental factors as well as the mortality of populations
could be measured, the key-factor/key-stage analysis
could quantitatively identify the ultimate cause of pop-
ulation dynamics.

The key-factor/key-stage analysis can be applied to
numerical factors as well as nominal factors if only a
single factor is considered. For example, it is possible
to evaluate the effect of temperature, given by numer-
ical values instead of nominal levels, on the population
variability. In this case, X in Eq. 6 is a column vector
whose elements are the temperature with the mean sub-
tracted. The variance, V(K ), can be divided into the
effect of temperature and the effect of unknown vari-
ability on each stage, using the SSP matrix generated
by multivariate linear regression analysis. When more
than one factor is analyzed, however, numerical factors
will frequently present problems, i.e., if the compo-

nents of design matrix, Xh, are not mutually orthogonal,
the key factor cannot be determined, since V(K ) cannot
be divided algebraically. This difficulty can be intu-
itively understood by considering an imaginary situa-
tion where the rainfall and the temperature are closely
correlated, e.g., more observations are obtained for the
combination of high rainfall and high temperature. In
such a case, even if the rainfall has a large contribution
to the population variability, it cannot be judged wheth-
er this contribution derives from the rainfall or from
the temperature. Therefore, the experiment should be
carefully designed when more than one factor is being
considered. It is preferable that the number of obser-
vations is the same for all combinations of levels of
factors.

It is also possible to analyze the variability of the
population that completed the sth stage, (Ns11, j), instead
of the variability of mortality. For convenience, let k0j

be the negative logarithm of the number of individuals
entering the first stage, i.e., k0j 5 2log(N1j). Then, the
following relation holds: log(Ns11, j) 5 2 kij.sSi50

Hence, the variance can be divided into the contribution
of each stage by a form similar to Eq. 3:

s

V[log(N )] 5 cov[k , 2log(N )]. (11)Os11 i s11
i50

The variance can be further divided into each combi-
nation of factor 3 stage by a form similar to Eq. 10:

f ss1
V[log(N )] 5 (X b̂ )9(X b̂ )O O Os11 h i h m[ ]n 2 1 i50 h51 m50

s s1
1 û9û (12)O O i m[ ]n 2 1 i50 m50

where the ( f 1 1)(s 1 1)2 terms seen inside the sum-
mation sign are the elements of the SSP matrix cal-
culated in MANOVA in which ki of the different stages
are treated as different variables.

The estimates of population size are sometimes sub-
jected to large sampling errors. The population data
used for the calculation of Table 1 also contain sam-
pling errors; the survival rate exceeds 1 in several el-
ements. If Nij contains such sampling errors, the cov(ki,
K ) in Eq. 3 is overestimated for i 5 1 and i 5 s, and
the cov[ki, 2log(Ns11)] in Eq. 11 is overestimated for
i 5 s (see Kuno 1971). Similarly, the components of
the first and final stages are overestimated in Eq. 10,
as are components of the final stage in Eq. 12. Thus,
the results of the analysis may be biased in this case.
Careful identification of the key factor and key stage
should be made if the estimates of population sizes
contain large sampling errors.
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APPENDIX

This appendix shows the data used to calculate Table 1. The population of P. rapae crucivora entering each larval instar
per plant was estimated under the three factors (plant spacing, season, and block).

Spacing Season Block

Instar population

1st
(N1j)

2nd
(N2j)

3rd
(N3j)

4th
(N4j)

5th
(N5j)

Sparse
Sparse
Sparse
Sparse

Spring
Spring
Spring
Spring

1
2
3
4

15.728
9.370

16.258
10.671

9.226
5.026
9.086
5.390

7.246
3.905
6.464
5.460

6.937
3.451
4.835
5.670

5.911
2.599
3.377
4.079

Sparse
Sparse
Sparse
Sparse

Summer
Summer
Summer
Summer

1
2
3
4

50.427
29.489
32.821
33.043

24.588
13.647
14.863
16.038

22.134
12.844
10.659
15.364

13.212
12.742

9.731
12.559

3.076
5.403
6.638
8.403

Dense
Dense
Dense
Dense

Spring
Spring
Spring
Spring

1
2
3
4

3.977
5.039
2.777
5.666

2.584
2.428
1.062
3.269

2.265
2.059
0.718
2.546

1.972
2.019
0.689
2.705

1.610
1.478
0.832
2.367

Dense
Dense
Dense
Dense

Summer
Summer
Summer
Summer

1
2
3
4

17.281
14.522
14.056
14.240

11.347
9.701
6.201
7.526

9.535
7.472
3.111
7.913

7.911
6.106
4.629

11.283

2.109
3.703
5.000
6.917
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