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The conventional criteria for predictive model selection do not indicate the absolute 
goodness of models. For example, the quantity of Akaike Information Criterion (AIC) has 
meanings only when we compare AIC of different models for a given amount of data. Thus, 
the existing criteria do not tell us whether the quantity and quality of data is satisfactory, 
and hence we cannot judge whether we should collect more data to further improve the 
model or not. To solve such a practical problem, we propose a criterion RD that lies 
between 0 and 1. RD is an asymptotic estimate of the proportion of improvement in the 
predictive ability under a given error structure, where the predictive ability is defined by 
the expected logarithmic probability by which the next data set (2nd data set) occurs under 
a model constructed from the current data set (1st data set). That is, the predictive ability is 
defined by the expected logarithmic probability of the 2nd data set evaluated at the model 
constructed from the 1st data set. Appropriate choice of error structures is important in the 
calculation of RD. We illustrate examples of calculations of RD by using a small data set 
about the moth abundance. 

Keywords error structure; fixed dispersion parameter; generalized linear model; GLMM; 
model selection; predictive ability;  
 

1. Introduction 

A wide range of statistical models are used to predict ecological variables such as animal 
abundance (e.g., Yamamura et al., 2006; Yamamura et al., 2008). Simultaneously, statistical 
models are used to understand the principal mechanism that determines the ecological variables. 
We can use various criteria, such as AIC, AICc, BIC, and Cp, to select the best model for 
prediction among several candidate models (Burnham and Anderson, 2002; Claeskens and 
Hjort, 2008; Konishi and Kitagawa, 2008). AIC (Akaike Information Criterion) was proposed 
to measure the closeness between the true probability distribution and the model’s predicted 
probability distribution by measuring the Kullback-Leibler divergence that derives from 
Shannon’s lemma about information (Kullback and Leibler, 1951; Akaike, 1973; Miyagawa, 
1979). AICc was proposed by Sugiura (1978) as an unbiased version of AIC for special cases, 
i.e., fixed-effect models having a single normal error. On the other hand, BIC (Bayesian 
Information Criterion) adopts a model that maximizes the average likelihood for the current 
data under the assumption that the parameters are fluctuating by following prior distributions 
(Schwarz, 1978).  

The conventional criteria of model-selection do not indicate the absolute goodness of models; 
they only indicate the relative goodness of models among candidate models for a given amount 
of data. For example, the quantity of AIC has no meaning by itself; it has meanings only when 
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we compare AIC of different models for a given amount of data. Anderson (2007, p.32) 
described the current situation of model-selection as follows: “In model selection, we are really 
asking which is the best model for a given sample size.” Thus, the existing criteria do not tell us 
whether the quantity and quality of data is satisfactory, and hence we cannot judge whether we 
should collect more data to further improve the model or not.  

In this paper, we propose a criterion RD that enables the evaluation of the absolute goodness 
of models in their predictive ability. RD is an estimate of the proportion of improvement in the 
predictive ability of models under a given error structure. A simple R function is provided in 
electronic appendices so that we can calculate RD for generalized linear models.  

 
Table 1 

Number of captured male adults of the Oriental leafworm moth, Spodoptera litura 
 

Trap number 
Month 

5 6 7 8 

1 8 16 55 341 
2 16 48 112 874 

 

2. Problems in the Conventional Criteria 

Table 1 indicates a portion of data on the number of male adults of the Oriental leafworm moth, 
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), captured by pheromone traps 
(Wakamura et al., 1992; Yamamura, 2009). We use this small data set for the purpose of 
illustration so that we can easily perform the calculation. S. litura is one of the major pest 
insects of soybean and many other crops in the western part of Japan. These leafworms start 
their reproduction from small populations each year. Then, they quickly grow in number from 
May to September by means of rapid reproduction over several generations. Simultaneously, 
they disperse over a wider area of Japan. The seasonal change in their dispersal ability has been 
well studied in mark-recapture experiments (Yamamura, 2002).  

Two factors are included in the data of Table 1: trap (2 levels) and month (4 levels). We treat 
the factor of trap as a nominal variable while treating the factor of month as a continuous 
variable. We first transform the number of moths by the logarithmic transformation to enhance 
the additive property and homoscedasticity. The logarithmic transformation for a variable y is 
generally given by 

loge(y + w/2),        (1) 

where w is the width of discreteness of y (Yamamura, 1999); we have w = 0 if y is a continuous 
variable. For the count data of the number of moths in Table 1, we have w = 1. We will discuss 
the meanings of the transformation in detail in a later section. We use the following model: 

0 0log ( 0.5) , ~ (0, )+ = + + + +e ij i j i j ij ijx a a b M b M e e N φ ,   (2) 

where xij is the number of moths captured in the ith trap in the jth month; Mj is the month (Mj = 
5, 6, 7, and 8); a0 is the intercept; ai is the effect of the ith trap (i = 1, 2); b0 is the coefficient for 
month; bi is the coefficient for the interaction between trap and month; and eij is the random 
variable following a normal distribution having a variance ϕ. We define the hierarchical family 
as the series of models in which the interaction terms are included in the model only if all of the 
corresponding lower-order terms are included in the model. We should use only the models that 
belong to the hierarchical family because the interaction terms are usually defined as the 
components that are not explained by the corresponding lower-order terms. Hence, we compare 
the five models of a hierarchical family having the following sets of parameters: (a0, ai), (a0, 
b0), (a0, ai, b0), (a0, ai, b0, bi), and the null model (a0). We refer to these models as Models A, B, 
C, D, and E, respectively. In order to simplify the analysis for the purpose of illustration, we do 
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not consider quadratic terms of the effect of month, although higher order terms are also 
important in these data (Yamamura, 1993). 

 
Table 2 

Calculation of RD for the moth data listed in Table 1 
 

Factors df SS F P 𝜙𝜙� k RD AICc BIC 
Model A: (a0, ai)          
 Trap 1 1.44 0.53 0.496 

2.73 2 0.061 40.43 34.66 
 Error 6 16.36   
Model B: (a0, b0)          
 Month 1 15.68 44.50 5.5×10−4 

0.35 2 0.846 24.06 18.30 
 Error 6 2.11   
Model C: (a0, ai, b0)          
 Trap 1 1.44 10.57 0.023 

0.14 3 0.907 24.31 11.29  Month 1 15.68 115.45 1.2×10−4 
 Error 5 0.68   
Model D: (a0, ai, b0, bi)          
 Trap 1 1.44 8.52 0.043 

0.17 4 0.889 42.91 13.31 
 Month 1 15.68 93.08 6.5×10−4 
 Trap×Month 1 0.01 0.03 0.868 
 Error 4 0.67   
Model E: (a0)          
 Error 7 17.80   2.54 1 0 35.50 33.26 

 
Five models were fitted to the logarithmic number of captured moth: loge(x + 0.5). 

The results of the Type I ANOVA are also shown. df is the degree of freedom. SS is 
the sum of squares for the corresponding factors and errors. k is the number of fixed-
effect parameters. 

 
 
The quantity of AICc became smallest (24.06) in Model B, which contains only the influence 

of month (b0) (Table 2). In the conventional procedure of model-selection by AICc, we usually 
adopt the model that indicates the smallest AICc while discarding all other models. Thus the 
adopted model is 

log ( 0.5) 4.018 1.252 , ~ (0,0.352)+ = − + +e ij j ij ijx M e e N .   (3) 

The quantity of BIC became smallest (11.29) in Model C, which contains the main effects of 
trap (ai) and month (b0). If we use a zero-sum constraint so that the intercept is not influenced 
by the addition of factors, the adopted model is 

log ( 0.5) 4.018 0.424 1.252 , ~ (0,0.136)+ = − − + +e ij i j ij ijx d M e e N ,  (4) 

where di is a dummy variable: d1 = 1 and d2 = −1.  
Each constructed model involves a certain amount of uncertainty. To ameliorate the 

uncertainty of a single model, an increasing number of researchers are adopting a model-
averaging approach in which the AICc (or BIC) of several models are utilized as a weight in 
creating an averaged model (e.g., Burnham and Anderson, 2002; Claeskens and Hjort, 2008; 
Wheeler and Bailer, 2009). Several recent versions of statistical software are supporting certain 
types of model-averaging procedures (SAS Institute Inc., 2010a, b). In the model-averaging 
procedure in JMP software, for example, all non-null models including non-hierarchical family 
are averaged. Then, if we use AICc-weight given by exp(−0.5×AICc), we obtain the following 
averaged model for the moth data. 

log ( 0.5) 4.016 0.138 1.252 0.019+ = − − + −e ij i j i jx d M d M .   (5) 
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The quantities of AICc (and BIC) are not influenced by the re-parameterization of the model. 
On the other hand, the averaged model changes depending on the re-parameterization in several 
cases. This indicates the logical inconsistency of the model-averaging approach. For example, 
let us express Eq. 2 by a “centered form”: 

0 0log ( 0.5) ( 6.5) , ~ (0, )′+ = + + + − +e ij i j i j ij ijx a a b M b M e e N φ ,  (6) 

where 6.5′ = +i i ia a b . In this parameterization, the averaged model weighted by AICc-weight is 

log ( 0.5) 4.016 0.198 1.252 0.000+ = − − + −e ij i j i jx d M d M .   (7) 

Thus, the averaged model constructed from Eq. 6 is different from that constructed from Eq. 2, 
although Eqs. 2 and 6 are completely the same model. A model-averaging approach is also 
applicable for BIC. The weight created by BIC has a clearer meaning than AICc-weight; it 
corresponds to the posterior probability of the model, because BIC indicates the average 
posterior probability that is based on the assumption that all parameters are fluctuating by 
following prior distributions. 

We cannot judge whether the current best model such as Eq. 3 is sufficiently good in their 
predictive ability or not. We can construct a better model if we collect a larger amount of data, 
such as by using a larger size of traps. Similarly, we may be able to construct a better model if 
we provide other explanatory variables, such as the temperature and wind speed. However, we 
cannot judge whether we should increase the quantity and quality of data to further improve the 
model or not. To enable the evaluation of the absolute goodness of models in their predictive 
ability, we should first discuss the definition of the predictive ability and the true model. The 
definitions will be logical rather than mathematical. 

3. Derivation of the Estimate of Predictive Ability 

3.1. Definition of Predictive Ability 

We can define the predictive ability by using various arbitrary scoring rules (e.g., Gneiting and 
Raftery, 2007). However, we think that the predictive ability should be most directly defined by 
the probability that the predicted event actually occurs in the future. Thus, the predictive ability 
should be based on a probability such as “the probability that the next data set (2nd data set) 
occurs under the predictive model constructed from the current data set (1st data set).” We 
should evaluate the total probability that will result after repeating many independent 
predictions. Hence, we should use the geometric mean of probability instead of the arithmetic 
mean of probability. Furthermore, we should use the logarithm of the geometric mean instead 
of the geometric mean itself, because a multiplicative process becomes an additive process by a 
logarithmic transformation. Let us imagine the simplest case where we have only two kinds of 
prediction: good predictions having a high probability of hits and bad predictions having a low 
probability of hits. Let p be the proportion of good predictions. Let q1 and q2 be the probability 
of hits in a good prediction and a bad prediction, respectively. Then, the logarithm of the 
geometric mean of probability of hits is given by ploge(q1) + (1 − p)loge(q2). It is expressed by 
loge(q2) + p(loge(q1) − loge(q2)). The quantity changes linearly with increasing the p. If we 
calculate the logarithm of the geometric mean of probability of hits after a long sequence of 
predictions, therefore, the quantity increases linearly with increasing the proportion of good 
predictions. Hence, we can evaluate the goodness of prediction more appropriately by using the 
logarithmic form. The logarithm of the geometric mean of probability is identical to the 
expectation of logarithmic probability. Hence, we define the predictive ability by the expected 
logarithmic probability of the next data set (2nd data set) evaluated at the predictive model 
constructed from the current data set (1st data set) with given dispersion parameters. We will 
denote the predictive ability by E2(l1) in later sections. A unit change in E2(l1) can be interpreted 
as a unit change in the proportion of some kind of “good” prediction. We later define RD as an 
estimate of the relative quantity of E2(l1).  

We should note that this definition of predictive ability, E2(l1), has no relation with 
“information” such as Shannon information and Kullback-Leibler divergence, although the 
equations are almost identical. Historically, Shannon (1948) adopted the logarithmic form in 
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defining the amount of “information” by somewhat similar reasons about the additive property. 
However, the measure of information was constructed to quantify the rarity of a given sequence 
of events. Shannon (1948) said that the measure of information is “a measure of how much 
‘choice’ is involved in the selection of the event or of how uncertain we are of the outcome.” 
Thus, the meaning of the measure of information is essentially different from our measure of 
predictive ability, although the equations are almost identical. Shannon information is 
alternatively called “entropy”, but Shannon information has again no direct relation with 
thermodynamic entropy, except that the equations are almost identical. Hence, the physical 
interpretation of entropy is not applicable to Shannon information. Tribus and McIrvine (1971, 
p180) described the history as follows. “In 1961, one of us (Tribus) asked Shannon what he had 
thought about when he had finally confirmed his famous measure. Shannon replied: “My 
greatest concern was what to call it. I thought of calling it ‘information,’ but the word was 
overly used, so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann, 
he had a better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the 
first place your uncertainty function has been used in statistical mechanics under that name, so 
it already has a name. In the second place, and more important, no one knows what entropy 
really is, so in a debate you will always have the advantage.’ ” ” 

3.2. Laplace Definitions of True Probability and True Model 

We use the philosophical definition given by Laplace (1825): the true probability is defined as 
the components that we cannot predict by a model that includes all knowledge we can use. 
Laplace (1825) considered that the probability arises from our lack of knowledge. Laplace said 
that “We ought then to consider the present state of the universe as the effect of its previous 
state and as the cause of that which is to follow. An intelligence that, at a given instant, could 
comprehend all the forces by which nature is animated and the respective situation of the beings 
that make it up . . .  For such an intelligence nothing would be uncertain, and the future, like the 
past, would be open to its eyes.” Even if an event is deterministically generated by a specific 
explanatory factor, we must define the event as a true random component if we have not 
measured the specific explanatory factor due to our lack of knowledge. The probability of 
occurrence of events is an objective probability, not a subjective probability, because the form 
of the probability model is uniquely determined under a given set of knowledge. The true 
probability and the true model change with the progress of science. Laplace (1825) gave the 
example of Halley’s Comet. The emergence of Halley’s Comet was a probabilistic event in 
ancient times under the existing knowledge, but it later became a deterministic event due to the 
progress of our knowledge; the component of true probability became smaller and finally it 
nearly disappeared along with the progress of science. The stochastic model for Halley’s Comet 
in ancient times and the deterministic model for Halley’s Comet under the current knowledge 
are both the true models at the time they were constructed. Similarly, we are currently using 
probability forecasting for rainfall, but the probability component of weather forecasting may 
become much smaller in the future due to the progress of our technology. The true probability, 
as well as the true model, continuously changes along with the advances in technology. Thus, 
no absolute true model exists in nature; the true model is determined by the current knowledge 
based on the limitations of the current science. Laplace (1825) described that “probability is 
relative in part to this ignorance and in part to our knowledge.” 

In this Laplace definition of true probability, we must define the true probability as the 
variability that is not explained by the saturated model or the most complex model, where the 
saturated model is defined by the model that includes all parameters we can use. 
Simultaneously, we must define the true model as the saturated model or the most complex 
model. The term “model” in true model is used as the same manner as the saturated model, null 
model, and maximal model. It discusses only the separation between systematic components 
and random components. Hence, we must use other knowledge about the distribution of random 
components and the link function to perform appropriate inference. The random components 
are then estimated from the true probability that is given by the residuals of the true model. If 
we did not use appropriate knowledge about the distribution, the inference about the model will 
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be inappropriate. The appropriate choice of error structure is thus important in calculating the 
predictive ability. We will later discuss this issue in section 4.2. 

3.3. Estimation of Predictive Ability 

It is extremely important for us to understand that a true model does not provide the highest 
predictive ability when the parameters of the model are estimated from a limited amount of 
data. A simpler model, which is a false model because it ignores some factors in the true model, 
provides the highest predictive ability in many cases. We can estimate the predictive ability by 
using a simple form approximately as follows. 

We use the quantity of l1 that is defined by the maximal logarithmic likelihood for the current 
data set (1st data set) with given dispersion parameters. Unbiased estimates of dispersion 
parameters are separately obtained from the true probability components that are the residuals 
from the true model which is given by the saturated model or the most complex model due to 
the Laplace definition. Let l1AIC be the maximal logarithmic likelihood for the current data set 
(1st data set), in which the fixed-effect parameters and dispersion parameters are estimated 
simultaneously. It should be noted that we are using l1 but not using l1AIC; this is an important 
difference. In the derivation of AIC or AICc, as we will see later, the quantity of l1AIC is used 
instead of l1. The comparison of l1AIC does not indicate the comparison of probabilities although 
it indicates the comparison of likelihood. We can compare the probabilities only if we use the 
same definition of probability for all models by fixing the dispersion parameters.  

We use the following well-known asymptotic result. We omit the proof which is somewhat 
complicated, but it is fully given in several studies (e.g., Takeuchi, 1976; Burnham and 
Anderson, 2002; Murata, 2005; Amari, 2007; Kitagawa, 2007; Konishi and Kitagawa, 2008). 
Let E2(l1) be the expected logarithmic probability of the next data set (2nd data set) evaluated at 
the predictive model f constructed from the current data set (1st data set) with given dispersion 
parameters. E2(l1) is the mathematical expression of predictive ability in the definition described 
above. Let f(x|θ) be the probability distribution of x for a model f with parameter vector θ. Let 
θ0 be the maximum likelihood estimates of θ for an infinite amount of data under the model f. 
Let k be number of fixed-effect parameters in the model f. Then, E2(l1) is asymptotically given 
by 

12 1 1 1( ) ( ) tr( ( ) ( ) )−= −E l E l 0 0I θ J θ ,      (8) 

where E1(l1) is the expected logarithmic probability of the current data set (1st data set) 
evaluated at the predictive model constructed from the current data set (1st data set) with given 
dispersion parameters. I(θ0) and J(θ0) are the following k×k matrices I(θ) and J(θ) evaluated at 
the parameter vector θ = θ0: 

log ( ) log ( )
( ) ( )

∂ ∂
=

′∂ ∂∫
e ef x f x

g x dx
θ θ

I θ
θ θ

,    (9) 

2 log ( )
( ) ( )

∂
= −

′∂ ∂∫
e f x

g x dx
θ

J θ
θ θ

,      (10) 

where g(x) is the probability distribution of x for the true model. The difference between I(θ) 
and J(θ) is given by the following formula (Konishi and Kitagawa, 2008, p50): 

2 ( )( )( ) ( )
( )

∂
− =

′∂ ∂∫
f xg x dx

f x
θ

I θ J θ
θ θ θ

.     (11) 

For the true model (i.e., the saturated model or the most complex model), we have f(x|θ0) = g(x). 
Hence, we have I(θ0) = J(θ0) from Eq. 11. Then, we obtain tr(I(θ0)J(θ0)−1) = k in Eq. 8 under 
the regularity conditions, where k is the number of fixed-effect parameters in the model f. For 
the true model, therefore, we can estimate E2(l1) by 

2 1 1ˆ ( ) = −E l l k .        (12) 
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The relation given by Eq. 12 is not applicable to false models, where the false models are 
constructed by dropping several parameters from the true model. Complicated calculations are 
required for exactly evaluating Eq. 8 in such cases (for example, Fujikoshi and Satoh, 1997). 
For simplicity, we use Eq. 12 for false models as well as the true model as a practical 
approximation in the next section. We will later discuss this issue by conducting simulation 
experiments in section 5. 

3.4. Proportion of Improvement in the Predictive Ability 

The “intelligence” of Laplace (1825) has the highest predictive ability because the 
“intelligence” completely knows the future data set in the definition of Laplace (1825). On the 
other hand, we have the lowest predictive ability when we have no explanatory variable. Hence, 
we consider the following measure, Rpred, that indicates the proportion of improvement in the 
predictive ability between these two extremes. 

2 1 2 1,null
pred

2 2,max 2 1,null

( ) ( )
( ) ( )

−
=

−
E l E lR

E l E l
 

2 2,max 2 1

2 2,max 2 1,null

( ) ( )1
( ) ( )

−
= −

−
E l E l

E l E l
.     (13) 

E2(l1) is the expected logarithmic probability of the next data set (2nd data set) evaluated at the 
model constructed from the current data set (1st data set) with given dispersion parameters. 
E2(l1,null) is the quantity of E2(l1) in which the null model is used for the predictive model. The 
null model is defined by the model that contains no explanatory variable; it contains only an 
intercept. In contrast, E2(l2,max) is the expected logarithmic probability of the next data set (2nd 
data set) evaluated at the maximal model constructed from the next data set (2nd data set) with 
given dispersion parameters. The maximal model is defined by the model in which the number 
of fixed-effect parameters is the same as the number of observations. Thus, E2(l2,max) is the 
predictive ability of the best model constructed by the “intelligence” of Laplace (1825) under 
our error structure. The quantity of Eq. 13 becomes 100% for the “intelligence” of Laplace 
(1825) while the quantity becomes 0% for a person having no explanatory variable. 

If we are handling a single dependent variable, we estimate E2(l1) and E2(l1,null) by l1 − k and 
l1,null − 1, respectively, using Eq. 12; where l1,null is the observed logarithmic probability of the 
current data set (1st data set) evaluated at the null model constructed from the current data set 
(1st data set) with given dispersion parameters. It is important for us to notice that we have a 
logical equality, E2(l2,max) = E1(l1,max); where E1(l1,max) is the expected logarithmic probability of 
the current data set (1st data set) evaluated at the maximal model constructed from the current 
data set (1st data set) with given dispersion parameters. Hence, we can estimate E2(l2,max) 
simply by l1,max, that is, the observed logarithmic probability of the current data set (1st data set) 
evaluated at the maximal model constructed from the current data set (1st data set) with given 
dispersion parameters. Therefore, we obtain the estimate of Rpred by the following formula. We 
define this estimate as RD. 

1,max 1

1,max 1,null
1

1
− +

= −
− +

D
l l kR

l l
,       (14) 

where dispersion parameters are estimated from the true probability that is given by the true 
model (i.e., the saturated model or the most complex model). If the number of dependent 
variables is θ, the denominator in Eq. 14 should be replaced by l1,max − l1,null + θ, because the 
number of intercepts is θ in such cases. As for a fixed-effect linear model having a single 
normal error or a generalized linear model having a single dispersion parameter (denoted by ϕ), 
we can calculate RD by a simpler form by using the deviance where the dispersion parameter is 
estimated from the true probability.  

null

ˆ21 ˆ2
+

= −
+

D
D kR

D
φ
φ

,        (15) 
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where D is the deviance of the current data set, that is, D = 2 𝜙𝜙�(l1,max – l1). Dnull is the quantity 
of D for the null model. 

Electronic appendix A includes a simple R function for calculating RD for generalized linear 
models by using Eq. 15. The function calculates RD for all models that belong to the 
hierarchical family in which the interaction terms are included in the model only if all of the 
corresponding lower-order terms are included in the model. Then, it lists the models in 
descending order of RD. The objects generated by the glm function in R are used in this function 
(R Development Core Team, 2011). Electronic appendix B includes a SAS macro for 
calculating RD for generalized linear mixed models (GLMMs) by using Eq. 14. Proc GLIMMIX 
and Proc MIXED of SAS is used in this program (SAS Institute Inc., 2010b). Electronic 
appendix C describes a variant of RD that is called RSD. All electronic appendices are available 
from the following web site:  
http://cse.naro.affrc.go.jp/yamamura/RD_criterion_program.html. 

3.5. Relation with Conventional Criteria 

The primary purpose of the calculation of RD is to enable the evaluation of the quantity and 
quality of data. The purpose is slightly different from that of existing criteria which evaluate the 
relative goodness of models for a given amount of data. However, it will be meaningful for us 
to examine the relation between RD and existing criteria. In several specific situations, the 
maximization of RD coincides with the optimization of conventional criteria. In such cases, 
therefore, we can calculate the maximal quantity of RD by using the optimal quantity of existing 
criteria.  

For a fixed-effect model having a single normal error, the maximization of RD is identical to 
the minimization of Cp of Mallows (1973; 1995), because Mallows’ Cp is calculated by  

2ˆ= + −p
DC k n
φ

,       (16) 

where n is the number of observations. In this case, therefore, we can calculate the maximal 
quantity of RD by using the minimal quantity of Cp. 

Let E2(l1AIC) be the expected logarithmic likelihood of the next data set (2nd data set) 
evaluated at the predictive model f in which the fixed-effect parameters and dispersion 
parameters (including random-effect parameters and error variances) are estimated 
simultaneously from the current data set (1st data set). Let kAIC be the number of parameters 
including fixed-effect parameters and dispersion parameters in the model f. AIC uses a similar 
asymptotic result as Eq. 12, 

2 1AIC 1AIC AICˆ ( ) = −E l l k ,       (17) 

assuming that Eq. 17 approximately applies to false models as well as the true model. We 
should again notice that the meaning of Eq. 17 is much different from that of Eq. 12; we should 
not confuse these two equations. AIC is then defined by  

AIC = −2l1AIC + 2kAIC.       (18) 

For a fixed-effect model having a Poisson error or a binomial error, the dispersion parameter is 
fixed at 1 beforehand, and hence we have l1AIC = l1 and kAIC = k. For these cases, therefore, we 
can calculate the maximal quantity of RD by using the minimal quantity of AIC. 

For the maximum quasi-likelihood estimation, maximizing RD is identical to minimizing 
QAIC of Burnham and Anderson (2002) except for the trivial difference between k and kAIC. In 
this case, therefore, we can calculate the maximal quantity of RD by using the minimal quantity 
of QAIC, where QAIC is defined by 

QAIC = −2l1 + 2kAIC.       (19) 

The quantity of l1 in Eq. 19 is not the exact log-likelihood but the quasi-likelihood defined by 
McCullagh and Nelder (1989, p325), although we use the same notation for simplicity in this 
paper. The quasi-likelihood behaves like the log-likelihood in most cases, and hence the same 

http://cse.naro.affrc.go.jp/yamamura/RD_criterion_program.html
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argument is applicable; we will illustrate it by using simulations in section 5.3. The dispersion 
parameter is estimated from the most complex model (Burnham and Anderson, 2002). 
Generalized Pearson chi-square statistics divided by the residual degrees of freedom are usually 
used for estimating the dispersion parameter (McCullagh and Nelder, 1989).  

The coefficient of determination, R2, is a classical index measuring the proportion of 
explanation of candidate models. R2 indicates how well the model explains the current data set 
(1st data set) but it does not indicate how well the model predicts the next data set (2nd data 
set). R2 is applicable only for normal fixed-effect models, and hence various extensions of R2 
have been proposed (e.g., Nagelkerke, 1991; Cox and Wermuth, 1992; Zheng, 2000; Xu, 2003; 
Liu et al., 2008; Orelien and Edwards, 2008; Recchia, 2010). Among these, the adjusted 
likelihood ratio index that was proposed by Ben-Akiva and Lerman (1985), which is also 
referred to as the adjusted McFadden’s pseudo R2, is somewhat similar to RD. The adjusted 
McFadden’s pseudo R2 is defined by 

1AIC AIC
McF

1AIC,null
1 −

= −
l kR

l
,       (20) 

where l1AIC,null is l1AIC evaluated at the null model (Long and Fre, 2000). RMcF becomes nearly 
equal to RD if l1,max is fixed at 0 and if the dispersion parameter is fixed at 1; for example, if we 
perform logistic regression for Bernoulli trials without considering overdispersion. 

4. Example Calculation of RD 

4.1. Abundance of Moths 

Table 2 includes the results of the Type I ANOVA for the data on the abundance of moths 
given in Table 1. The significance probabilities of the effect of trap were quite different 
between models. The effect of trap was significant at the 0.05 level in Models C and D (P = 
0.02 and 0.04, respectively), but it was not significant in Model A (P = 0.50). The sum of 
squares (SS) of the effect of trap was the same for all models; it was 1.44 for Models A, C, and 
D. On the other hand, the estimate of the dispersion parameter in Model A was much larger 
than those for Models C and D: 𝜙𝜙� = 2.73 for Model A, while 𝜙𝜙� = 0.14 and 0.17 for Model C 
and D, respectively. This is because the estimate of the dispersion parameter in Model A was 
erroneously contaminated by the variability of the effect of month. Consequently, the quantity 
of F became much smaller in Model A. Hence, the result of the F-test in Model A is erroneous. 
This would have been the reason that Draper and Smith (1998) recommended the use of their 
“pure errors” in the F-test. The calculation of RD is based on a procedure similar to that of 
Draper and Smith (1998); we always use the dispersion parameter that is calculated from the 
true probability that is given by the saturated model or the most complex model. In this case, we 
always use the dispersion parameter that was estimated from Model D: 𝜙𝜙� = 0.17. In a fixed 
effect model having a single normal distribution of error, the deviance is identical to the 
residual sum of squares. Hence, the quantity of RD in Model C, for example, is calculated by RD 
= 1 − (0.68 + 2×3×0.17)/ (17.80+2×0.17) = 0.907 by using Eq. 15. The example R program for 
calculating RD in Table 2 is given in electronic appendix A. When we use a data frame named 
MothData that contains columns of the dependent variable (y) and the explanatory variables 
(trap and month), for example, we can calculate RD for the models that belong to the 
hierarchical family by using a program such as RDcompare(log(y+0.5) ~ 
trap*month, data=MothData). The quantity of RD was sufficiently high for Model C: 
there was a 90.7% improvement in the predictive ability. Hence, we can judge that the current 
quantity and quality of data was satisfactory for constructing a model for prediction. 

4.2. Erroneous calculation of RD 

The quantity of RD indicates the proportion of improvement in the predictive ability under the 
given error structure. Therefore, the appropriate choice of error structure is important in 
calculating the predictive ability. We previously analyzed the data on moth abundance. These 
data are so-called “count data.” Therefore, several researchers may consider that these data 
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should be analyzed by using Poisson regression as described in the textbooks on generalized 
linear models. The results of calculation using Poisson errors are shown in Table 3. The 
quantity of RD is about 0.98 for both Model C and Model D. This value is extremely large; the 
quantity of 1− RD is only 2%. However, we should notice that the P-values are extremely small 
(P < 2.2×10−16) except for the interaction term in Model D. This constitutes a typical misuse of 
Poisson regression. This misuse belongs to a wider class of misuse that is called 
pseudoreplication; it was first pointed out by Hurlbert (1984, p205) for binomial distributions as 
well as for normal distributions. 

The observed number of individuals will fluctuate following a Poisson distribution for a 
given expectation. However, the expectation itself will also usually fluctuate. The variance of 
the number of individuals (x) is generally given by 

V(x) = V(μ) + E(Vlocal(x)),       (21) 

where E and V indicate the global expectation and global variance, while μ and Vlocal(x) indicate 
the local expectation and local variance, respectively. We have the Poisson variability around 
the local expectation for count variables. Hence we can replace Vlocal(x) by μ in Eq. 21 because 
the variance of a Poisson variable is equal to its mean. The calculation of RD by using the 
Poisson regression will be appropriate only if the first term in the right-hand side of Eq. 21 is 
very small.  

 
Table 3 

Erroneous calculation of RD for the moth data listed in Table 1 
 

Factors df LR P k RD 

Model A: (a0, ai)     
 

 Trap 1 278.9 <2.2×10−16 2 0.108 

Model B: (a0, b0)      
 Month 1 2243.2 <2.2×10−16 2 0.872 
Model C: (a0, ai, b0)      

 Trap 1 278.9 <2.2×10−16 
3 0.979 

 Month 1 2243.2 <2.2×10−16 
Model D: (a0, ai, b0, bi)      

 Trap 1 278.9 <2.2×10−16 
4 0.979  Month 1 2243.2 <2.2×10−16 

 Trap×Month 1 0.4 0.516 

Model E: (a0)      
     1 0 

 
Poisson errors were assumed for the number of captured moths. The 

results of the Type I analyses of deviance (ANODEV) are also shown. df 
is the degree of freedom. LR is the likelihood ratio chi-square. k is the 
number of fixed-effect parameters. 

 

4.3. Multiplicative processes with Poisson errors 

In performing an appropriate choice of error structure, we should consider the mechanism 
yielding the variability in the ecological variable. We previously calculated RD after using a 
logarithmic transformation of the form loge(x + 0.5). This procedure of calculation will be 
appropriate in analyzing the data on the population abundance that emerged from a 
multiplicative process in which each individual reproduces by its reproduction rate at each point 
of time. Let us assume that the abundance μ is determined by the instantaneous reproduction 
rate per capita at time t, denoted by rt, by a form of exp(∫rtdt). A multiplicative process becomes 
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an additive process in a logarithmic scale; the logarithm of population expectation, loge(μ), is 
determined by the sum of the instantaneous reproduction rate per capita by the form of ∫rtdt. Let 
us further consider that the instantaneous reproduction rate per capita (rt) fluctuates by 
following a distribution with a fixed variance around a mean, while its mean differs depending 
on our experimental treatment or other conditions. Then, the distribution of loge(μ) after a fixed 
duration of reproduction follows a normal distribution having a fixed variance due to the central 
limit theorem, irrespective of the exact form of distribution of the fluctuation in the 
reproduction rate at each point of time, if the duration of reproduction is sufficiently long as 
compared with the self-correlated duration of reproduction rate. Therefore, the observed 
number of individuals follows a logarithmic Poisson generalized linear mixed model 
(logarithmic Poisson GLMM): the expectation of the number of individuals fluctuates by 
following a normal distribution with a fixed variance in a logarithmic scale, and the observed 
number of individuals fluctuates by following a Poisson distribution around the expectation. In 
this case, the global variance given by Eq. 21 is expressed as 

V(x) = ψ2[E(μ)]2 + E(μ),       (22) 

where ψ is the fixed CV of the lognormal distribution of μ. 

4.4. Approximation to GLMM 

Electronic appendix B provides a SAS macro to calculate RD for the above type of GLMM. 
However, the calculation of RD for GLMM generally requires a troublesome calculation 
including the numerical integration or the Laplace approximation. Hence, a practical 
approximation to GLMM will be also recommended. The first-term in the right-hand side of 
Eq. 22 (i.e., the variability of μ) becomes much larger than the second term (i.e., the variability 
around μ) if the global average of the population expectation E(μ) is sufficiently large. In this 
case, therefore, we can approximately use a linear model using the logarithmic transformation 
loge(x + 0.5) as an approximation of the logarithmic Poisson GLMM, by ignoring the variability 
that corresponds to the second term in the right-hand side of Eq. 22. If the sampling effort is 
slightly different between experimental plots, we should use the number of individuals per 
sampling effort. Let s be the sampling effort in a plot and smin be the minimal quantity. Then, 
we can use 

min

1log
2

 + 
 

e
x
s s

 .       (23) 

The discrete width (w in Eq. 1) is set at the maximal value, 1/smin, in this case. This 
approximation will be available only if the variability in the sampling effort is not so large. 

5. Simulation experiments 

We have uncertainty about whether RD is a practical estimate of the proportion of improvement 
in the predictive ability, because we used Eq. 12 as approximations for false models as well as 
for true models in deriving RD. The uncertainty will be larger for small data set due to the 
uncertainty in the asymptotic property and the uncertainty of the estimate of dispersion 
parameters. Therefore, we examined the behavior of maximal quantity of RD under condition of 
a small amount of data by performing simulations for various combinations of design matrices, 
numbers of errors, and error distributions. In these simulations, we calculated E2(l1) by the 
direct average of logarithmic probability density of 2nd data set evaluated at the model 
constructed from 1st data set by maximizing RD. In calculating the proportion of improvement 
in the predictive ability, we directly calculated the quantity of Eq. 13. Then, we compared the 
average of maximal RD with the quantity of Eq. 13 to judge whether the approximation by Eq. 
14 is satisfactory or not. The simulations indicated that the maximal RD is an appropriate 
estimate of the proportion of improvement in the predictive ability of the best model unless the 
sample size is too small. The simulations additionally indicated that the quantity of E2(l1) of the 
best model constructed by the maximization of RD is larger than that of the models constructed 
by other criteria, such as AIC, AICc, and BIC, when the maximization of RD is different from 
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that of conventional criteria. This result implies the superiority of RD over other criteria as a 
model-selection tool. However, the superiority as a model-selection tool seems to be trivial; the 
primary purpose of the calculation of RD is to enable the evaluation of the quantity and quality 
of data, like the classical R2 index, rather than the model-selection. 

5.1. Fixed-effect models 

We first used two-way design experiments defined by 

= + + + +ijk i j ij ijky c eα β γ ,     ~ (0, )ijke N φ ,    (24) 

where yijk is the observation of the kth replication in the ith level of the first treatment in the jth 
level of the second treatment, c is the intercept, αi is the effect of the ith level of the first 
treatment, βj is the effect of the jth level of the second treatment, γij is the interaction, and eijk is 
the error that independently follows a normal distribution of mean zero and variance ϕ. The 
model that contains all parameters, such as c, αi, βj, and γij, is the saturated model in this case. It 
is a true model that includes all knowledge we can use. The true variance is estimated from the 
true probability that is given by the residuals of the true model. For simplicity, we used 
experiments with two levels: i = 1, 2 and j = 1, 2 in Eq. 24. We additionally compared E2(l1) of 
the model constructed by maximizing RD with that of the models constructed by AICc, AIC, 
and BIC. The modification, AICc, is defined by 

AIC AIC
c 1AIC AIC

AIC

2 ( 1)AIC 2 2
1
+

= − + +
− −

k kl k
n k

,      (25) 

where n is the number of observations. For a fixed-effect model having a single normal error, 
AICc is an unbiased estimate of −2E2(l1AIC) if f is the true model, that is, if f(x|θ0) = g(x) (see 
Sugiura, 1978). BIC is defined by 

BIC = −2l1AIC + kAIC loge(n).      (26) 

We used a restriction on parameters to avoid the singularity: α1 = 0, α2 = α, β1  = 0, β2 = β, γ11 
= γ22 = 0, and γ12 = γ21 = γ. Then, we used two sets of parameters, (c, α, β, γ) = (1, 1, 1, 0.5) and 
(1, 0.5, 0.5, 0.5). The number of replications for each combination of treatments was set at 3 
and 12. The dispersion parameter was set at ϕ  = 0.2 and 1. Only the models that belong to the 
hierarchical family were compared: (c), (c, α), (c, β), (c, α, β), and (c, α, β, γ). We performed 
1000 simulation runs for each set of parameters by using R. In each simulation run, we first 
generated new data set (1st data set) using a normal random number generator in which the true 
quantities of c, α, β, γ, and ϕ are used. Then, we obtained the unbiased estimate of dispersion 
parameter 𝜙𝜙�  from the true probability that is given by the saturated model that includes all 
parameters (c, α, β, γ). We next selected the set of fixed-effect parameters that yielded the 
largest RD. The unbiased estimate of the dispersion parameter obtained from the saturated 
model was used throughout the procedure of model-selection. Simultaneously, we selected the 
set of parameters that yielded the smallest AICc, AIC, and BIC. In calculating AICc, AIC, and 
BIC, the dispersion parameter was estimated for each model by the maximum likelihood 
method. We next generated new data set (2nd data set) using a normal random number 
generator in which the true quantities of c, α, β, γ, and ϕ are used. Then, we calculated the 
logarithmic probability density of 2nd data set evaluated at the model constructed by each 
criterion from 1st data set. We performed 1000 simulation runs, and calculated the predictive 
ability, E2(l1), by the direct average of logarithmic probability density of 2nd data set evaluated 
at the model constructed by each criterion from 1st data set. To calculate Rpred and RSpred, the 
predictive ability of the null-model, E2(l1,null), was calculated in a similar manner. The quantity 
of E2(l2,max) and E2(l2,sat) was also calculated in a similar manner except that l2,max and l2.sat were 
calculated by the logarithmic probability density of 2nd data set evaluated at the model 
constructed from 2nd data set under the dispersion parameters estimated from 1st data set.  

Table 4 indicates that the averages of the maximal RD were fairly close to the Rpred of the best 
model. However, the difference was larger than 0.1 in Models 5 and 7, which have the 
following disadvantageous conditions: the number of replications is small, and the dispersion 
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parameter ϕ is large. The calculated Rpred became negative in Model 7 due to the fluctuation in 
the estimate of the dispersion parameter. The quantity of E2(l1) of the model constructed by the 
maximization of RD (which in this case is identical to the predictive ability of the model 
constructed by Cp) was larger than that of the models constructed by AICc, AIC, and BIC. As 
for the comparison between AICc and AIC, the model constructed by AICc was superior to that 
constructed by AIC when the number of replications was small and the dispersion parameter ϕ 
was large (i.e., in Models 5 and 7), as Sugiura (1978) indicated for small samples. 

5.2. Mixed models 

We next examined the models that have more than one normal random component. Such 
models are referred to as mixed models if they contain at least one fixed-effect parameter. In the 
analysis of mixed models, the restricted maximum likelihood method (REML) is usually used 
as the default method in estimating variances in most of the statistical software, such as SAS 
(SAS Institute Inc., 2010b), JMP (SAS Institute Inc., 2010a), Stata (StataCorp, 2009), and SPSS 
(IBM Corp., 2011). We can select the parameters of the variance components by AIC or AICc. 
However, we cannot use AIC or AICc in selecting the fixed-effect parameters if we use REML, 
because only the likelihood concerning random-effect parameters is maximized in REML. We 
must use the maximum likelihood method if we want to select the fixed-effect parameters by 
AIC or AICc. Thus, there is an inconsistency; the variance structure is selected by REML but 
the quantity of variance is subsequently estimated by the maximum likelihood method instead 
of using REML (see, for example, Verbeke and Molenberghs, 1997). In contrast, in the 
procedure of model-selection using RD, no such inconsistency exists. We first use REML or the 
moment method to obtain unbiased estimates of all variances from the true probability that is 
given by the true model (i.e., the saturated model or the most complex model). Then, we 
estimate the fixed-effect parameters for candidate models by using the maximum likelihood 
method by treating the variances estimated by REML (or the moment methods) as known 
nuisance parameters; the variances estimated from the true probability that is given by the true 
model are used throughout the process of model-selection. 

We examined the behavior of RD and RSD in a split-plot design experiment that is one of the 
simplest cases of mixed models:  

= + + + + +ijk i ik j ij ijky c e eα β γ , (i = 1,2; j= 1,2), 
1 2~ (0, ), ~ (0, )ik ijke N e Nφ φ ,      (27) 

where yijk is the observation for the jth secondary factor (subplot factor) of the kth replicate of 
the ith primary factor (main plot factor), αi is the effect of the ith primary factor, βj is the effect 
of the jth secondary factor, eik is the error between replications that follows a normal 
distribution with mean zero and variance ϕ1, and eijk is the error within replications (residual 
error) that follows a normal distribution with mean zero and variance ϕ2. We again used a 
restriction on parameters to avoid the singularity: α1 = 0, α2 = α, β1 = 0, β2 = β, γ11 = γ22 = 0, and 
γ12 = γ21 = γ. Then, we used two sets of parameters, (c, α, β, γ) = (1, 1, 1, 0.5), and (1, 0.5, 0.5, 
0.5). The number of replications for each combination of treatments was set at 3 and 12. The 
dispersion parameters were set at ϕ1 = ϕ2 = 0.2 and 1. Only the models that belong to the 
hierarchical family were compared: (c), (c, α), (c, β), (c, α, β), and (c, α, β, γ). We performed 
1000 simulation runs for each set of parameters. We additionally compared E2(l1) of the models 
constructed by the maximization of RD with that of the models constructed by AICc, AIC, and 
BIC. 

Table 5 indicates that the averages of the maximal RD were fairly close to the Rpred of the best 
model. The difference between RD and Rpred was larger than 0.1 in Models 11, 13, and 15, which 
have the following disadvantageous conditions: the number of replications is small while the 
dispersion parameters, ϕ1 and ϕ2, are large. The quantity of E2(l1) of the model constructed by 
the maximization of RD was larger than that of the models constructed by AICc, AIC, and BIC, 
except in the case of Model 15. As for the comparison between AIC and AICc, the model 
constructed by AICc was superior to that constructed by AIC only when the number of 
replications was small (i.e., in Models 9, 11, 13, and 15). 
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5.3. Quasi-likelihood models 

We next examined the behavior of RD in the inference using quasi-likelihood. We used an 
assumption that the variance is proportional to the mean; it corresponds to an overdispersed 
Poisson distribution having a constant dispersion parameter ϕ (McCullagh and Nelder, 1989). 
We additionally compared E2(l1) of the model constructed by the maximization of RD with that 
of the model constructed by QAICc defined by 

AIC AIC
c 1 AIC

AIC

2 ( 1)QAIC 2 2
1
+

= − + +
− −

k kl k
n k

,      (28) 

where l1 is the quasi-likelihood although we use the same notation for simplicity. We assumed 
that the observation fluctuates by following a Poisson distribution while the mean of the 
Poisson distribution independently fluctuates by following a gamma distribution. Then, the 
observation fluctuates by following a negative binomial distribution. We used a restriction on 
the parameters of the gamma distribution so that the dispersion parameter is kept constant; the 
scale parameter of the gamma distribution was kept constant while the shape parameter was 
changed to yield different means. This type of negative binomial model was called NB1 by 
Cameron and Trivedi (1998). Then, in selecting the best model, we can approximately use the 
quasi-likelihood of the overdispersed Poisson distribution in place of the logarithmic likelihood 
of the negative binomial distribution. We again used a two-way factorial design for the 
systematic components: i = 1,2 and j = 1,2 in Eq. 24. We used a restriction on parameters to 
avoid the singularity: α1 = 0, α2 = α, β1 = 0, β2 = β, γ11 = γ22 = 0, and γ12 = γ21 = γ. The dispersion 
parameter should be larger than 1 for an overdispersed Poisson distribution, and hence we used 
ϕ = 1.2 and 2. We used two sets of fixed-effect parameters, (c, α, β, γ) = (8, 6, 4, 2) and (4, 3, 2, 
1), which yield moderate amounts of RD. The number of replications for each combination of 
treatments was set at 3 and 12. We again compared only the models that belong to the 
hierarchical family: (c), (c, α), (c, β), (c, α, β), and (c, α, β, γ). We performed 1000 simulation 
runs for each set of parameters.  

We did not use the likelihood of actual distribution, a negative binomial distribution, in 
calculating RD; we only used the knowledge that the variance is proportional to the mean. 
Nonetheless, the averages of the maximal RD were fairly close to the Rpred of the best model 
unless the number of replications was too small (Table 6). The difference between RD and Rpred 
was larger than 0.1 in Models 19, 21, and 23, which have the following disadvantageous 
conditions: the number of replications is small, and the dispersion parameter ϕ is large while the 
effects of factors are small. The quantity of E2(l1) of the model constructed by the maximization 
of RD (which in this case is identical to the predictive ability of the model constructed by QAIC) 
was larger than that of the model constructed by QAICc. 

5.4. Poisson or binomial models 

Finally, we examined the behavior of RD for Poisson errors or binomial errors without 
overdispersion. The model constructed by the maximization of RD is identical to the model 
constructed by AIC in this case. We again used a two-way factorial design for the systematic 
components: i = 1,2 and j = 1,2 in Eq. 24. We used a restriction on parameters to avoid the 
singularity: α1 = 0, α2 = α, β1 = 0, β2 = β, γ11 = γ22 = 0, and γ12 = γ21 = γ. We again compared only 
the models that belong to the hierarchical family: (c), (c, α), (c, β), (c, α, β), and (c, α, β, γ). For 
Poisson errors, we used two sets of fixed-effect parameters, (c, α, β, γ) = (8, 6, 4, 2) and (4, 3, 2, 
1). The number of replications for each combination of treatments was set at 3 and 12. For 
binomial errors, we used two sets of fixed-effect parameters, (c, α, β, γ) = (0.2, 0.2, 0.2, 0.2) and 
(0.1, 0.1, 0.1, 0.1). The number of replications for each combination of treatments was set at 3 
and 12. The number of cases (n) for each replication was fixed at 20. We performed 1000 
simulation runs for each set of parameters.  

For Poisson errors, the averages of the maximal RD were close to the Rpred of the best model 
unless the sample size was too small (Table 7). The difference between RD and Rpred in Table 7 
is smaller than that of the corresponding overdispersed Poisson errors given in Table 6, 
probably because the dispersion parameter is known in Table 7. For binomial errors, the 
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averages of the maximal RD were also close to the Rpred of the best model unless the sample size 
was too small (Table 7). The quantity of E2(l1) of the model constructed by the maximization of 
RD (which in this case is identical to the predictive ability of the model constructed by AIC) was 
equal to or larger than that of the models constructed by AICc and BIC in these simulations, 
although Anderson (2007) highly recommended the use of AICc. 

6. Conclusions 

We proposed a criterion RD as an estimate of the proportion of improvement in the predictive 
ability of ecological models. RD indicates the absolute goodness of models while other existing 
criteria, such as AIC, BIC, Cp, indicate the relative goodness among candidate models for a 
given amount of data. For the data on the abundance of moths, the quantity of maximal RD was 
about 0.9, and hence the predictive ability of the model was judged to be sufficiently high 
(Table 2), although we need further discussion on the sufficient quantity of RD. If the largest 
quantity of RD is still small, such as 0.4, we should increase the quantity and quality of data by 
collecting more data and by preparing new explanatory variables. 

We sometimes use models to understand the principal mechanism that yields the observation, 
rather than for purposes of prediction. The criterion RD will also be useful for this purpose; RD 
enables us to identify an appropriate model that summarizes the mechanism that yields the 
observation. For example, a researcher may consider that a model achieving an 80% 
improvement in predictive ability is an appropriate model for summarizing the mechanism 
yielding the observation. Such a researcher should adopt a model that has an RD near 0.8, 
instead of adopting the model that has the largest RD. In the example about the abundance of 
moths, the RD of Model B (0.846) was closest to 0.8 (Table 2). In this case, therefore, such a 
researcher should consider that the number of moths is principally determined by a single 
factor, the month. However, the appropriate quantity of RD for the summarization, as well as the 
appropriate quantity of RD for the prediction, will change depending on the purpose of research. 
This should be discussed in future studies. 
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Table 4 
Results of simulations for the two-way factorial design experiment having a single normal error 

 

Model number 1 2 3 4 5 6 7 8 

Fixed effect parameters (c, α, β, γ) (1,1,1,0.5) (1,1,1,0.5) (1,0.5,0.5,0.5) (1,0.5,0.5,0.5) (1,1,1,0.5) (1,1,1,0.5) (1,0.5,0.5,0.5) (1,0.5,0.5,0.5) 

Dispersion parameter φ  0.2 0.2 0.2 0.2 1 1 1 1 

Number of replications 3 12 3 12 3 12 3 12 

Average of RD 0.662 0.717 0.363 0.446 0.273 0.320 0.130 0.119 

Rpred 0.657 0.718 0.316 0.449 0.164 0.309 −0.051 0.080 

Average of RSD 0.790 0.942 0.501 0.831 0.404 0.743 0.205 0.418 

RSpred 0.784 0.943 0.460 0.840 0.267 0.732 −0.103 0.326 

Average of φ̂  0.200 0.200 0.200 0.200 1.001 1.001 1.001 1.001 

Predictive ability, E2(l1)       
  

 RD −11.606 −32.302 −11.981 −32.304 −21.499 −71.249 −21.115 −71.725 

 AICc −14.853 −32.699 −14.993 −32.701 −23.352 −71.751 −21.810 −72.287 

 AIC −14.381 −32.693 −14.585 −32.695 −23.915 −71.607 −23.373 −72.035 

 BIC −14.454 −32.782 −14.720 −32.795 −23.931 −72.344 −23.209 −73.070 
 

The average of maximal RD is compared to Rpred of the best model. The model constructed by the maximization of RD is identical to the model constructed by Cp in this case. The row 
of predictive ability shows the direct average of logarithmic probability density of 2nd data set evaluated at the model constructed by each criterion from 1st data set. 
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Table 5 
Results of simulations for the split-plot design experiment having normal errors 

 
Model number 9 10 11 12 13 14 15 16 

Fixed effect parameters (c, α, β, γ) (1,1,1,0.5) (1,1,1,0.5) (1,0.5,0.5,0.5) (1,0.5,0.5,0.5) (1,1,1,0.5) (1,1,1,0.5) (1,0.5,0.5,0.5) (1,0.5,0.5,0.5) 

Variance between replication 1φ  0.2 0.2 0.2 0.2 1 1 1 1 

Variance within replication 2φ  0.2 0.2 0.2 0.2 1 1 1 1 

Number of replications 3 12 3 12 3 12 3 12 

Average of RD 0.621 0.644 0.364 0.389 0.275 0.247 0.160 0.093 

Rpred 0.560 0.637 0.232 0.382 0.066 0.213 −0.106 0.040 

Average of RSD 0.754 0.919 0.492 0.790 0.399 0.658 0.241 0.345 

RSpred 0.700 0.920 0.361 0.799 0.119 0.614 −0.231 0.193 

Average of 1̂φ  0.215 0.207 0.215 0.200 1.074 1.033 1.074 1.033 

Average of 2̂φ  0.189 0.198 0.189 0.200 0.944 0.988 0.944 0.988 

Predictive ability, E2(l1)       
  

 RD −17.967 −46.125 −18.513 −46.315 −27.773 −85.455 −27.380 −85.659 

 AICc −21.635 −46.645 −19.656 −46.861 −28.139 −86.078 −26.823 −86.260 

 AIC −22.394 −46.622 −22.853 −46.827 −31.767 −85.870 −31.107 −86.052 

 BIC −22.462 −46.730 −22.885 −47.090 −31.446 −86.735 −30.630 −86.565 
 

The average of maximal RD is compared to Rpred of the best model. The row of predictive ability shows the direct average of logarithmic probability density of 2nd data set 
evaluated at the model constructed by each criterion from 1st data set. 
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Table 6 
Results of simulations for the two-way factorial design experiment having an overdispersed Poisson error 

 
Model number 17 18 19 20 21 22 23 24 

Fixed effect parameters (c, α, β, γ) (8,6,4,2) (8,6,4,2) (4,3,2,1) (4,3,2,1) (8,6,4,2) (8,6,4,2) (4,3,2,1) (4,3,2,1) 

Dispersion parameter φ  1.2 1.2 1.2 1.2 2 2 2 2 
Number of replications 3 12 3 12 3 12 3 12 
Average of RD 0.384 0.440 0.237 0.261 0.276 0.311 0.178 0.181 

Rpred 0.287 0.429 0.076 0.246 0.155 0.296 −0.020 0.141 

Average of RSD 0.534 0.831 0.363 0.689 0.411 0.734 0.281 0.570 

RSpred 0.434 0.823 0.137 0.668 0.260 0.712 −0.041 0.488 

Average of φ̂  1.188 1.187 1.150 1.207 1.937 1.982 1.884 1.989 

Predictive ability, E2(l1)       
  

 RD −40.433 −121.467 −36.823 −104.614 −30.843 −83.612 −26.797 −73.461 

 QAICc −41.480 −121.583 −37.225 −104.819 −31.557 −83.757 −26.872 −73.662 
 

The average of maximal RD is compared to Rpred of the best model. The model constructed by the maximization of RD is identical to the model constructed by QAIC 
in this case. The row of predictive ability shows the direct average of quasilikelihood of 2nd data set evaluated at the model constructed by each criterion from 1st data set. 
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Table 7 
Results of simulations for the two-way factorial design experiment having a Poisson error or a binomial error (n = 20) without overdispersion 

 

 

The average of maximal RD is compared to Rpred of the best model. The model constructed by the maximization of RD is identical to the model constructed by AIC in this case. The row of 
predictive ability shows the direct average of logarithmic probability density of 2nd data set evaluated at the model constructed by each criterion from 1st data set. 

 

 

Model number 25 26 27 28 29 30 31 32 

Error distribution Poisson Poisson Poisson Poisson binomial binomial binomial binomial 

Fixed effect parameters (c, α, β, γ) (8,6,4,2) (8,6,4,2) (4,3,2,1) (4,3,2,1) (0.2,0.2,0.2,0.2) (0.2,0.2,0.2,0.2) (0.1,0.1,0.1,0.1) (0.1,0.1,0.1,0.1) 

Number of replications 3 12 3 12 3 12 3 12 
Average of RD 0.382 0.475 0.237 0.299 0.610 0.683 0.322 0.421 

Rpred 0.340 0.479 0.122 0.289 0.610 0.689 0.257 0.428 

Average of RSD 0.544 0.852 0.370 0.729 0.750 0.935 0.470 0.825 

RSpred 0.496 0.851 0.210 0.706 0.760 0.935 0.398 0.832 

Predictive ability, E2(l1)       
  

 RD −35.058 −132.256 −30.787 −115.436 −27.938 −105.028 −27.005 −98.661 

 AICc −35.884 −132.318 −31.203 −115.569 −28.559 −105.028 −28.246 −98.665 

 BIC −35.275 −132.621 −30.982 −116.276 −27.984 −105.028 −27.267 −98.700 
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