
ORIGINAL ARTICLE

Popul Ecol (2002) 44:93–101 © The Society of Population Ecology and Springer-Verlag Tokyo 2002

Kohji Yamamura

Dispersal distance of heterogeneous populations

Received: December 3, 2001 / Accepted: May 16, 2002

Abstract Heterogeneity among individuals in a population
is one of the important factors that influence the rate of
population spread. To incorporate the population heteroge-
neity into dispersal rate, we assume that the traveling dura-
tion varies following a gamma distribution with a shape
parameter k, where (1/k) indicates the heterogeneity in the
traveling duration. The resultant distribution of the travel-
ing distance, which is called dispersal function, is then ex-
pressed by using a modified Bessel function of the second
kind of order (k � 1). It is shown that the front of the
distribution spreads with time in an accelerated manner
during an early phase of expansion if the heterogeneity is
sufficiently large, which is consistent with the results from
previous studies of biological invasions. By using the data
obtained from mark–recapture experiments using traps, we
can obtain the maximum likelihood estimates of three pa-
rameters: heterogeneity in the traveling duration, which is
defined by (1/k); the mean dispersal ability, which is defined
by the product of the diffusion coefficient and the mean
traveling duration; and the trap efficiency. The usefulness of
this model is shown by using the data of mark–recapture
experiments with the common cutworm, Spodoptera litura
(Fabricius) (Lepidoptera: Noctuidae).
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Introduction

Quantitative evaluation of the dispersal ability of organisms
is critically important in designing and evaluating manage-
ment strategies for highly mobile insects (Turchin and
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Thoeny 1993) as well as in predicting the spatial spread
of invading organisms (Shigesada and Kawasaki 1997).
Skellam (1951) analyzed the spread of an invading species
when growth is Malthusian, showing that the rate of spread
is approximately constant. However, this prediction does
not always match the data. Andow et al. (1990, 1993) have
shown that several species, such as the rice water weevil
(Lissorhoptrus oryzophilus), expand the range of distribu-
tion in an accelerated manner, suggesting the importance of
macroscale jumps provided by air currents or human trans-
port. The asymptotic rate of spread generally depends on
the probability distribution of the dispersal distance (i.e.,
dispersal function) and the reproduction rates of individu-
als. Kot et al. (1996) have suggested that the rate of spread
changes, depending critically on very long distance dispersal
events, that is, on the length of the tails of the dispersal
function. Long tails of the dispersal function can occur due
to several factors, one of which is heterogeneity in the dis-
persal tendencies within population.

To incorporate the population heterogeneity into dis-
persal rate, Inoue (1978) assumed that a dispersing popula-
tion consists of two subpopulations that have different
diffusion coefficients. For describing the dispersal function
of each subpopulation, he used a bivariate normal distribu-
tion, which is yielded when a population randomly moves in
a two-dimensional space for a fixed traveling duration. In
describing the dispersal of stream fish, Skalski and Gilliam
(2000) also assumed two subpopulations, i.e., “fast fish” and
“slow fish.” For describing the dispersal function, they used
a univariate normal distribution, which is yielded when a
population randomly moves along a line for a fixed travel-
ing duration. In describing the long-range movement of a
checkered beetle, Thanasimus dubius, Cronin et al. (2000)
also assumed two subpopulations, i.e., slow-moving and
fast-moving form. For describing the dispersal function of
each subpopulation, they used an approximated equation
for zero-order modified Bessel function of the second kind,
which is yielded when a population randomly moves in a
two-dimensional space with a constant rate of settlement.
Although these authors assumed that the dispersing popu-
lation consists of only two subpopulations, the population
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may actually consist of three or more subpopulations that
have different dispersal tendencies. It is therefore reason-
able to assume that the dispersal tendencies of individuals
vary, following a probability distribution. Clark et al. (1999)
incorporated the heterogeneity into the diffusion model by
implicitly assuming that the inverse of traveling duration
follows a gamma distribution. In this article, we incorporate
the heterogeneity in another way; we assume that the trav-
eling duration varies following a gamma distribution. The
model is applied to the data of mark-recapture experiments
with the common cutworm, Spodoptera litura (Fabricius)
(Lepidoptera: Noctuidae), conducted by Wakamura et al.
(1990, 1992).

Model

Let us assume that the movement of individuals follows a
Brownian random motion, the rate of which is invariant in
time and space. We assume that the behavior of individuals
is mutually independent. The number of individuals at time
t at coordinate (x,y), which is denoted by n(x,y,t), is then
described by a partial differential equation (Okubo 1980;
Shigesada and Kawasaki 1997):
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where D is the diffusion coefficient measuring the dispersal
rate with units (distance2/time). When n0 individuals are
released at time 0 from the origin (0,0), the solution is given
by
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which is a bivariate normal distribution with mean
zero, correlation coefficient zero, and variance 2Dt in each
variate. Let us denote the distance from the origin by r �
÷x
—2�

—
y2–. Equation 2 can then be rewritten in a simpler form:
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Let us first assume that the traveling individuals settle at a
position by a rate λ, which is independent of time, space,
and the density of individuals. The probability distribution
of the traveling duration, which is denoted by p(t), is then
given by an exponential distribution:

p t t( ) ( ) � �λ λexp (4)

The expected number of settled individuals at a distance r,
which is denoted by f(r), is given by the following equation
because we are assuming that the behavior is independent
of the density of individuals.
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where K0(·) is a modified Bessel function of the second kind
of order zero (Broadbent and Kendall 1953; Williams 1961;
Shigesada 1980). The shape of f(r) is solely determined by
÷λ

—
/D

—
.

If the probability of settlement is not a constant that is
invariant in time and space, the probability density function
of traveling duration will have a larger variance than that of
an exponential distribution. We should use a more flexible
distribution to describe such distributions. Yasuda (1975),
studying the dispersal of human beings, used a gamma
distribution:
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where k and λ are the shape parameter and scale parameter,
respectively. Equation 6 reduces to the exponential distri-
bution (Eq. 4) when k � 1. The mean and variance are given
by k/λ and k/λ2, respectively. The variance of a gamma
distribution is larger than that of the exponential distribu-
tion with the same mean if k is smaller than 1. Therefore, we
can use (1/k) as an index of heterogeneity in the dispersal
duration. The quantity of (1/k) will be larger than 1 in many
cases because of heterogeneity, but it will sometimes be
smaller than 1 if the probability of settlement becomes
larger after a specific duration due to the consumption of
traveling energy. If the behavior of individuals is mutually
independent (i.e., density independent), the expected num-
ber of settled individuals at a distance r is given by
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n
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where K(k�1)(·) is a modified Bessel function of the second
kind of order (k � 1), which can be described by an integral
form:
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We define the mean dispersal ability, which is denoted by
m, by multiplying the mean traveling duration and the diffu-
sion coefficient: m � Dk/λ. Equation 7 is then rewritten as
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When (1/k) equals 1, Eq. 9 reduces to Eq. 5, where (λ/D) is
replaced by (1/m). If all individuals settle just after traveling
for the same duration, (1/k) becomes zero, keeping the
mean traveling duration constant. In such a case, Eq. 9
reduces to Eq. 3 where Dt is replaced by m. The mean
dispersal distance and mean squared distance in Eq. 9 are
given by
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where E indicates the expectation.
It is convenient to use an approximation for Eq. 9, as the

calculation of a Bessel function is sometimes troublesome.
A modified Bessel function is approximately given by the
following formula if z is large (see Jeffrey 2000, for
example):

K z
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Exact equality holds for v � �0.5 and 0.5. By using Eq. 12,
Turchin and Thoeny (1993) derived an approximation of
Eq. 5:
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In a similar way, we obtain an approximation of Eq. 9:
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Several authors have indicated the usefulness of an empiri-
cal equation, a generalized gamma distribution (Taylor
1980; Portnoy and Willson 1993; Turchin 1998):

f r r r( ) ( )[ ] � ��α �ε γ
exp (15)

where α, �, ε, and γ are constants. Equation 14 corresponds
to a special case of Eq. 15 where � � ÷m

—
/k
—

, ε � 1.5 � k, and
γ � 1.

Figure 1 shows examples of the dispersal function given
by Eq. 9 for (1/k) � (2/3), 1, and 2. It seems that the
approximation by Eq. 14 is satisfactory when (1/k) lies be-
tween (2/3) and 2. The curve for (1/k) � 2 has a much larger
density than the curve for (1/k) � 1 in a large distance
range, although these curves resemble each other in a small
distance range.

Rate of spread

The expansion rate of the front of distribution is calculated
by a simple manner in the foregoing model. For simplicity,
let us assume that each settled individual yields R0 adults of
the next generation at the settled position. Also assume that

Fig. 1. Examples of the
dispersal function for small
(left figures) and large distances
(right figures). Solid curves
indicate the curves given by Eq.
9; broken curves indicate the
approximation given by Eq. 14.
n0 � 1; m � 1. Equation 14
coincides exactly with Eq. 9 for
(1/k) � (2/3) and 2



96

the traveling duration of new adults independently follows
Eq. 6. We again assume that k, λ, and D are invariant in time
and space. For simplicity, we ignore the density-dependent
effects that may occur during the process of dispersal, al-
though several authors have indicated the potential impor-
tance of these effects (Shigesada 1980; van den Bosch et al.
1990; Mollison 1991; Lewis and Kareiva 1993; Wang et al.
2002). Due to the reproducibility in the convolution inte-
grals of a gamma distribution, the distribution of the cumu-
lative traveling duration from generation 1 to generation τ,
which is denoted by pτ(t), is given by a gamma distribution
with a shape parameter τk and a scale parameter λ:
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We can then simply obtain the density of individuals at a
distance r after reproduction of the τ generation by multi-
plying n0R0

τ by the proportion of individuals settling at the
distance r after traveling the cumulative duration. Let nc be
the critical density of individuals that is detected. Then, by
replacing k and n0 in Eq. 9 with τk and n0R0

τ, respectively, we
obtain the distance between the origin and the dispersal
front after reproduction of the τ generation by numerically
solving the following equation for r:
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Figure 2 indicates the expansion of front calculated by using
the FindRoot function of Mathematica (Wolfram 1996).
The upper graph in Fig. 2 indicates that the front expands in
an accelerated manner if the heterogeneity is sufficiently
large, which is consistent with the field observation indi-
cated by Andow et al. (1990, 1993). However, the rate of
spread approaches a constant in the later phase of expan-
sion, as shown in the lower graph in Fig. 2. The asymptotic
rate of population expansion is larger in a population with
higher heterogeneity (larger 1/k) even if the mean dispersal
ability (m) is the same, that is, even if the diffusion coeffi-
cient (D) and mean traveling duration (k/λ) are the same.
We estimated the asymptotic rate of expansion per genera-
tion by the linear regression for the results from 10001 to
10010 generations for m � 1 and R0 � 2. The estimates for
(1/k) � 1, 10, 20, and 50 were 1.899, 3.019, 3.809, and 5.463,
respectively. We further estimated the asymptotic rate of
expansion for other combinations of the reproduction rate
(R0) and the heterogeneity in dispersal duration (1/k) for
m � 1 (Fig. 3). The actual population process will be
influenced by the population density in fields. Hence, our
estimates in Fig. 3, which are based on density-independent
assumptions in Eqs. 7 and 17, may be biased. According to
the “linear conjecture,” however, the rate of spread pre-
dicted from a density-independent model will be a good
approximation for that of the corresponding density-
dependent model in several situations (van den Bosch et al.
1990; Mollison 1991; Kot et al. 1996). The approximation
seems valid if (i) the rate of reproduction of an individual in

Fig. 2. Expansion of the distribution front calculated by using Eq. 17.
The numbers beside the curves indicate the heterogeneity in the travel-
ing duration (1/k) used in the calculation. n0 � 1; nc � 1; R0 � 2; m �
1. Upper graph: accelerated increase in an early stage of expansion.
Lower graph: constant increase in a later stage of expansion

Fig. 3. Influence of the reproduction rate (R0) and the heterogeneity in
dispersal duration (1/k) on the asymptotic rate of spread. Contours of
the rate of spread per generation are shown at intervals of two for
m � 1
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an occupied environment always less than the rate of repro-
duction in a virgin environment (i.e., no Alle effect), and (ii)
the influence of an individual on the environment very far
from its present position is negligible (van den Bosch et al.
1990).

van den Bosch et al. (1990) indicated that the asymptotic
rate of range expansion that is denoted by C is obtained
analytically by solving the following equations about a char-
acteristic function L(C,ψ):
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where f1(x) is the marginal distribution of f(r). Let us con-
sider a one-dimensional random movement to derive f1(x).
The number of individuals at time t at x, which is denoted by
n(x,t), is described by
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When n0 individuals are released at time 0 from origin, the
solution is given by
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If the density function of traveling duration is given by a
gamma distribution defined by Eq. 6, the expected number
of settled individuals at a position x is given by
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If we use the approximation given by Eq. 12, we obtain
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Equation 12 holds exactly for k � 1. In this case, Eq. 23
reduces to the exact solution for a one-dimensional random
walk with a constant rate of settlement (Williams 1961;
Turchin 1998).
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We substituted Eq. 22 for Eq. 19 and numerically obtained
the solution for Eq. 18. If m � 1, the solutions of C for

(1/k) � 1, 10, 20, and 50 were 1.899, 3.019, 3.809, and 5.463,
respectively. These solutions for C coincide with the asymp-
totic rate of expansion estimated by the linear regression
stated previously.

Estimation

We can estimate the parameters of the dispersal function if
we conduct a mark-recapture experiment. Let s be the num-
ber of traps that are used to recapture released individuals,
ri be the distance between the release point and the ith trap,
Yi be the number of individuals recaptured by the ith trap,
and yi be the observed quantity. We tentatively assume that
a settled individual is recaptured by a trap at a constant rate
and denote the rate by c. This assumption is somewhat
restrictive, and hence we discuss the problem in a later
section. Under these assumptions, the expected number of
individuals recaptured by the ith trap, which is denoted by
g(ri), is given by

g r cf ri i( ) ( ) � (25)

The released individuals fall into one of the (s � 1) catego-
ries, which consist of individuals captured by the ith trap
(i � 1,2, . . . s) and individuals not captured by any trap. If
each trap has a fixed probability of recapture, and if the
behavior of individuals is mutually independent, the distri-
bution of captured individuals follows a multinomial dis-
tribution consisting of (s � 1) categories. A multinomial
distribution is given by a conditional distribution of a Pois-
son distribution (Fisher 1922). If the proportion of recap-
tured individuals is small, it therefore becomes identical to
the Poisson distribution approximately. Hence, we obtain
the maximum-likelihood estimates of parameters, which
are denoted by k̂, m̂, and ĉ, by numerically maximizing the
log likelihood (l) of the Poisson distribution in such a case:
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We can estimate the asymptotic variance–covariance matrix
of estimates, which is denoted by V, by using the Hessian
matrix of the log likelihood function evaluated at k̂, m̂, and
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where var(·) and cov(·) indicate the variance and covari-
ance, respectively. If the number of recaptured individuals
(Yi) follows the Poisson distribution with a fixed mean, the
variance of Yi is equal to the mean, i.e., we have var(Yi) �
g(ri). However, it is unlikely that each trap has a probability
of recapture exactly coinciding with the predicted dispersal
curve. Even if the overall probability of recapture exactly
follows Eq. 25, the probability of recapture in each trap
will fluctuate because of the spatial heterogeneity of
environmental conditions. In such a case, the actual vari-
ance of the number of recaptured individuals becomes
larger than the variance predicted by the Poisson distribu-
tion, i.e., we have var(Yi) � g(ri). A standard way of consid-
ering such an overdispersion is to assume the following
variance function:

var Y g ri i( ) ( ) � f (28)

where f is called the dispersion parameter (McCullagh
and Nelder 1989). The quantity of f is usually estimated
by Pearson 
2 statistics divided by the degree of freedom
(Aitkin et al. 1989; McCullagh and Nelder 1989; SAS
Institute 1997):
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where p is the number of parameters; p � 3 for Eq. 25. We
then obtain the adjusted variance–covariance matrix of esti-
mated parameters by f̂ V̂. We can estimate the variance of
(1/k̂) by var(k̂)/(k̂4) through use of the delta method (Stuart
and Ord 1994).

We can calculate the maximum-likelihood estimates, k̂,
m̂, and ĉ , by using the DUD option in the procedure NLIN
of SAS (SAS Institute 1989), with the loss function defined
by the negative of Eq. 26. The Bessel function is obtained
by the numerical integration of Eq. 8 through use of the
Legendre–Gauss method. We can calculate the variance–
covariance matrix by using Mathematica (Wolfram
1996), where the second derivative (∂2l/∂k2) in Eq. 27 is
calculated by a numerical differentiation (function ND
in Mathematica). The estimation procedure is greatly
simplified if we avoid calculation of the Bessel function by
using the approximation given by Eq. 14.

Several authors have for simplicity used the least-squares
method in estimating the parameters of the dispersal func-
tion. In this method, we estimate parameters that minimize
the square of difference:
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However, the estimates sometimes differ significantly from
the maximum-likelihood estimates, as shown by the follow-
ing example.

Example

Wakamura et al. (1990, 1992) conducted mark–recapture
experiments with Spodoptera litura in Kagawa Prefecture,
northern Shikoku, Japan, in 1985. Twenty-four sex phero-
mone traps (water-pan traps, 30 � 30 � 15cm; Takeda,
Osaka, Japan) were placed in the experimental area to cap-
ture male S. litura. Male moths reared in the laboratory
were marked and released for 3 or 4 days from four release
points every month, from May to September. Male catches
with sex pheromone traps were continued until 3 days after
the last catch of marked males. The total numbers of re-
leased males were as follows: May, 5621; June, 7259; July,
4760; August, 5878; and September, 5263.

Figure 4 shows an example of the dispersal function that
was estimated using Eq. 9. The estimates obtained by the
least-squares method were very different from those ob-
tained by the maximum-likelihood method in the middle
range of distance. The maximum-likelihood estimates of
parameters changed considerably depending on the season
(Fig. 5). Estimates of the dispersion parameter f are much
larger than 1, with such a large f indicating that the prob-

Fig. 4. Dispersal function for Spodoptera litura in July. Upper graph:
the proportion of individuals recaptured by each of the 24 traps. Indi-
viduals were released from four points, and hence the 96 plots are
shown. Lower graph: a magnified figure around the dispersal origin.
Bold curves indicate the estimates obtained by the maximum-likeli-
hood method. Thin curves indicate those obtained by the least-squares
method
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ability of recapture has considerable spatial fluctuation, al-
though the systematic lack of fit of Eq. 9 might be suspected
in several cases.

Turchin and Thoeny (1993) have suggested the useful-
ness of the median dispersal distance, r0.5, that is, the radius
of a circle that encloses 50% of individuals, as an intuitive

Fig. 5. Seasonal change in the parameters estimated using Eq. 9. a
Vertical bars indicate the asymptotic standard errors estimated using
the Delta method. b,c Vertical bars indicate the asymptotic standard
errors estimated by the square root of var(m̂) and var(ĉ). d Standard
errors cannot be estimated for f0.5

Fig. 6. Seasonal change in the mean and median dispersal distances for
Spodoptera litura

measure of dispersal. We can obtain r0.5 by numerically
solving the following equation for r0.5:
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Figure 6 shows the estimated seasonal change in the mean
dispersal distance calculated by Eq. 10 and that in the me-
dian dispersal distance calculated by Eq. 31. The median
dispersal distance is consistently smaller than the mean dis-
persal distance.

Discussion

Shigesada et al. (1995) have provided stratified diffusion
models explaining why the speed of invasion is not constant
in several species. They considered a situation in which the
invading species extends its range into surrounding areas by
random diffusion, while at the same time producing indi-
viduals that colonize far away. Their model predicted that
the range radius increases with acceleration if the coloniza-
tion rate is sufficiently large. We derived a similar result by
assuming that the traveling duration of organisms follows a
gamma distribution. The upper graph in Fig. 2 indicates that
the distribution front expands with acceleration during an
early phase of expansion if the heterogeneity in the travel-
ing duration is sufficiently large.

A gamma distribution is able to describe both heteroge-
neous and homogeneous traveling durations. When (1/k) �
1, a gamma distribution becomes an exponential distribu-
tion that corresponds to the diffusion with a constant rate of
settlement (Broadbent and Kendall 1953). If (1/k) � 1, the
traveling duration is heterogeneous in a sense that the vari-
ance is larger than that of exponential distribution of the
same mean. If (1/k) � 1, on the other hand, the traveling

a

b

c

d
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duration is homogeneous in a sense that the variance is
smaller than that of exponential distribution. The dispersal
function of bivariate normal distribution is derived for the
extreme case of (1/k) � 0, i.e., a case where all individuals
settle after traveling the same duration. However, a gamma
distribution will not be able to generate a dispersal function
having an extremely long tail. Hence, another type of as-
sumption may be more suitable for several situations. Clark
et al. (1999) implicitly assumed that the inverse of traveling
duration follows a gamma distribution. In this case, by sub-
stituting n(r,1/t) for n(r,t) in the left-hand side of Eq. 7, we
obtain a distribution called “two-dimensional t” (2Dt)
kernel:

f r n r t p t dt n
r
D

k
D

k

( ) ( ) ( ) Ê
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ˆ
¯̃

•
 �  �  � 

� �

,1 1
4 40 0

2 1

λ λpÚ (32)

which tends to a normal distribution as (1/k) becomes zero
and to Cauchy distribution as (1/k) becomes large. Equa-
tion 32 is simpler than Eq. 7, but it does not include the
standard situation described by Eq. 5.

In deriving Eq. 7, we assumed that D is fixed and that
only the traveling duration varies. However, we can obtain
a similar result if we assume that the product of diffusion
coefficient and traveling duration (Dt) follows a gamma
distribution. In this case, the dispersal function is given by
Eq. 7 where D is replaced by 1. Similarly, if we assume that
(1/Dt) follows a gamma distribution, the dispersal function
is given by Eq. 32 where D is replaced by 1. We also obtain
a result similar to Eq. 7, if we assume that D varies, follow-
ing a gamma distribution, among individuals and that all
individuals have the same traveling duration. However,
we should be careful when we assume the variability in D.
In deriving Eq. 3, we implicitly assumed that D does not
change in the course of movement. In actual situations, D
will change in the course of movement of “each” individual,
depending on the local environmental condition such as
local wind speed and local barriers to movement. There-
fore, we should rather consider a “scaled traveling dura-
tion” in which the traveling duration is scaled by D every
moment. When a flying individual meets a strong wind at a
moment, for example, the individual suffers a large D at
that moment, and hence the scaled traveling duration at
that moment becomes larger. Then, we can use Eqs. 7 or 9
by assuming that the scaled traveling duration is approxi-
mately described by a gamma distribution.

We are sometimes confronted with a dilemma in apply-
ing models such as Eq. 25 to field experiments. Although
we assumed that a proportion of the settled individuals
are captured by traps in applying Eq. 25, these traps will
cause additional mortality in mark–recapture experiments.
Hence, Eq. 25 will be applicable only in a situation where
the proportion of recaptured individuals is small. If the trap
efficiency is large, we cannot apply the model, as the travel-
ing duration is influenced by the mortality caused by traps.
Conversely, if the trap efficiency is small, we cannot esti-
mate the spatial distribution with sufficient precision be-
cause of the large sampling errors. We are thus confronted
with a dilemma. When the distribution of the traveling du-

ration is described by an exponential distribution (Eq. 4),
that is, when (1/k) � 1, we will be able to solve this dilemma
by a uniform placement of traps. If traps are placed uni-
formly in a lattice pattern, the mortality caused by traps is
approximately constant, and hence we can assume that the
moving individuals are removed by traps at a constant rate,
δ. The proportion of individuals captured by traps at time t,
which is denoted by q(t), is then given by

q t t( ) ( )[ ] � �  � δ δ λexp (33)

The expected number of individuals captured by a trap
placed at a distance r, which is denoted by g(r), is given
by

g r
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where w is the density of traps per unit area; the inverse,
1/w, indicates the area per trap. In a mark–recapture
experiment, we know the released number of individuals
(n0) and the density of traps (w). Therefore, we can estimate
δ/D and ÷(

—
δ�

—
  λ)

—
/D
—
   by using Eq. 34, and hence we can

obtain the estimate of λ/D, although we cannot obtain the
estimate of D. We can therefore predict the natural distri-
bution of settled individuals, f(r), by substituting the esti-
mate of λ/D for Eq. 5. If traps are not placed uniformly
in space, however, we will not be able to describe g(r) in
a simple form, even if (1/k) � 1. In the mark–recapture
experiment of S. litura, traps were placed more densely
near the release points. These traps removed the released
individuals from the dispersing population to prevent fur-
ther dispersal. As a result, the tail density of the dispersal
function would be smaller than that of the dispersal func-
tion without removal. Hence, some bias in the estimates is
likely.

Wakamura et al. (1990) have used the dispersal function
proposed by Wallace (1966) to describe the dispersal of S.
litura: loge[f(x)] � a � b÷r

–
. They estimated two parameters

from this equation: the trap efficiency and the mean dis-
persal distance. The trap efficiency, which is denoted by P4,
was defined by the recapture rate at 4 km from the release
point. The mean flight distance, d, was calculated by using d
� 20/b2 (Hawkes 1972). The seasonal changes in P̂4 and d̂
(Figs. 4A and 3B in Wakamura et al. 1990) are similar to the
present estimates of seasonal changes in the trap efficiency
(c; Fig. 5) and mean dispersal distance (Fig. 6), respectively.
Wakamura et al. (1990) have further estimated the mean
survival period by plotting the estimated number of re-
leased live individuals against days after release using a
modified Jackson method (Itô 1973). Seasonal changes in
the mean survival period (Fig. 3C in Wakamura et al. 1990)
are similar to the seasonal change in the mean dispersal
ability (m) shown in Fig. 5. The mean dispersal ability was
defined by m � Dk/λ, and hence it is influenced by the
diffusion coefficient (D) as well as the mean traveling dura-
tion (k/λ). The similarity between Fig. 3C in Wakamura et
al. (1990) and our Fig. 5 indicates that the seasonal change
in m would be determined primarily by the seasonal change
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in the mean traveling duration rather than that of the diffu-
sion coefficient.

When we want to predict the expansion speed of biologi-
cal invaders, we should more precisely describe the tail
shape of the dispersal function, because the speed of inva-
sion is mostly determined by the tail shape (Kot et al. 1996).
In this case, we will be able to evaluate the validity of a
gamma distribution by calculating several sets of estimates
by changing the proportion of tail data used for the estima-
tion. If the estimates change monotonically with a decreas-
ing proportion of tail data, we can conclude that the gamma
distribution departs systematically from the data. For ex-
ample, for the data shown in Fig. 4, we obtained (1/k̂) �
1.39, m̂ � 9.3, and ĉ  � 2.67, if we used all data (s � 96). If
we used traps that were placed further away than 1km (s �
92), we obtained (1/k̂) � 2.03, m̂ � 22.0, and ĉ  � 3.13. For
traps placed further than 2km away (s � 84), we obtained
(1/k̂) � 1.06, m̂ � 16.4, and ĉ  � 2.57. For traps placed
further than 4km away (s � 59), we obtained (1/k̂) � 2.55,
m̂ � 26.8, and ĉ  � 3.34. The estimate of m was smallest
when we used all data for the estimation, although the
estimates fluctuated greatly depending on the proportion of
tail data. Therefore, a systematic departure was indicated
for the gamma distribution. When we want to predict the
tail distribution in this case, it might be preferable to use
estimates obtained from the traps placed further than 1km
away. We should always be careful when we extrapolate the
tail distribution from small-distance experiments.
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