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Abstract

Several strategies have been used in insecticide resistance management to prevent

the evolution of resistance, but the spatial aspects of insecticide application are cru-

cially important among these strategies. Here, we consider a structured environment

that consists of on-farm and off-farm fields where crops are planted periodically in

on-farm fields during cultivation periods. We define the basic reproduction rate (R0)

of resistance as the expected number of offspring of a resistant individual

divided by that of a susceptible individual under the condition that the propor-

tion of resistance is extremely small; it is measured as the quantity per cycle of

the cultivation period. We calculate loge R0ð Þ using realistic dose-survival cur-

ves under a given fitness cost of resistance genes. The evolution of resistance

occurs if and only if the loge R0ð Þ value is larger than 0. Then, we propose a pro-

cedure for calculating the optimal design of rotational spraying that prevents

the evolution of resistance, that is, the evolutionary stable strategy (ESS) for

farmers, satisfying the mortality required for managing the abundance of

insects. We consider the following controllable factors in calculating the

optimal design: the dose of insecticide, the number of sprays, the number

of different types of insecticides and potentially, the size of on-farm fields.

KEYWORD S
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1 | INTRODUCTION

Humans have developed a variety of chemicals to control
harmful organisms, including insects, fungi and bacteria,
that threaten food production as well as human health.
The repeated evolution of resistance against these
chemicals, however, is reducing our potential to find new
chemicals for insecticides. Global climate change may
further accelerate the evolution of resistance by increas-
ing the amount of insecticide that is used against the

increased abundance of insects (Maino, Umina, &
Hoffmann, 2018; Yamamura, Yokozawa, Nishimori,
Ueda, & Yokosuka, 2006). We should prolong the “useful
life” of chemicals by implementing pre-emptive insecti-
cide resistance management (IRM) strategies (Dusfour
et al., 2019; Suzuki, 2012a; Suzuki, 2012b). Two strategies
have been compared for many years after Coyne (1951):
that is, mixture use of chemicals and rotational use of
chemicals. Coyne (1951) recommended the rotational use
of chemicals, claiming that the mixture use advocated by
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manufacturers for fly-control measures in those days may
“result in the development of fly-strains resistant to both
insecticides at once.” Sixty years later, REX Consortium
(2013) reviewed the effects of these strategies from both
theoretical and empirical studies. They showed that theo-
retical studies favored using a mixture of chemicals but
that empirical studies yielded no such conclusion. On the
other hand, the Insecticide Resistance Action Committee
(IRAC) recommends the rotation-based resistance man-
agement program (Sparks & Nauen, 2015; Yamamoto,
2017). The mode of action (MoA) classification of types of
insecticides, which is required for constructing the design
of rotation, is provided on the IRAC website (http://
www.irac-online.org/).

The spatial aspects of insecticide application are cru-
cially important. Using a mixture of different types of
insecticides corresponds to a special case of rotational use
where the interval between the consecutive use of two
types of insecticides approaches zero. Hence, mixture use
and rotational use will yield no difference if the insecticide
acts independently and if no spatial structure exists. The
influence of spatial structure has been intensively

discussed in the context of the high-dose/refuge (HDR)
strategy for the management of Bt crops, which are geneti-
cally engineered crops for producing Bt toxins against
insects (Huang, Andow, & Buschman, 2011; Ives &
Andow, 2002). This strategy relies on the existence of
“refuges,” in which no insecticide is applied. Another use
of spatial structure is seen in the “mosaic” application of
insecticides, where we apply different insecticides continu-
ously in the different spatial areas of the fields instead of
providing refuges where no insecticide is applied (REX
Consortium, 2013). In this paper, we consider a structured
environment that consists of on-farm and off-farm fields
(Figure 1a). Crops are planted periodically in on-farm
fields during the cultivation period. Off-farm fields theoret-
ically correspond to refuges in the HDR strategy, but off-
farm fields rather correspond to the background fields that
are given before creating the cultivation fields. HDR strat-
egy considers controlling the size of refuges either for nat-
ural refuges or artificial refuges, while the size of
background fields may be less controllable.

We utilize the basic reproduction rate to calculate the
condition for the evolution of resistance. The basic
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reproduction number or the basic reproduction rate (usu-
ally denoted by R0 ) is frequently used in epidemiological
models to judge the condition where diseases invade epi-
demiological systems. The concept of R0 has become
somewhat popular in 2020 due to the prevalence of
COVID-19. It was originally defined as “the expected
number of secondary cases produced, in a completely
susceptible population, by a typical infected individual
during its entire period of infectiousness” (Diekmann,
Heesterbeek, & Metz, 1990). R0 denotes “R under condi-
tion 0” in the sense that it indicates the reproduction rate
when the density of infected individuals is nearly zero.
Several modifications of R0 can be used to define the
basic reproduction rate, depending on the system.
Yamamura (1998) calculated the basic reproduction rate
of the rice stripe virus disease per year, which is transmit-
ted by the small brown planthopper Laodelphax
striatellus (Fallén), to elucidate the required strength of
control against the small brown planthopper, for elimi-
nating the disease. Yamamura (2020) calculated the basic
reproduction rate of the Plum pox virus (PPV) per
infected Japanese plum tree to elucidate the required
control area in which the host trees are removed to eradi-
cate PPV. We apply a similar procedure here. We propose
a procedure to calculate the optimal design of rotational
spraying that prevents the evolution of resistance, that
is, the evolutionary stable strategy (ESS) for farmers, sat-
isfying the mortality required for managing the abun-
dance of insects. We consider the following controllable
factors in calculating the optimal design: the dose of
insecticide, the number of sprays, the number of differ-
ent types of insecticides and potentially, the size of on-
farm fields. We first consider a situation in which the
phenotype of the resistance gene is always resistant to
insecticides. It corresponds to haploid insects that repro-
duce asexually or diploid insects in which the resistance
gene is completely dominant. Then, we next show that
the theory is approximately applicable to general genetic
systems where the resistance gene is recessive or incom-
pletely dominant.

2 | MODEL

2.1 | Effect of structured environments

We consider a structured environment as illustrated in
Figure 1a; we assume that cultivation farms emerge peri-
odically in fields, constructing a structured environment.
The insect population is divided into two subpopulations,
an off-farm population and an on-farm population, at the
beginning of the cultivation period, as illustrated in Figure
1b. Each population repeats one or more generations

within the cultivation period. Then, the two populations
are mixed at the end of each cultivation period.

Figure 1c illustrates how the evolution of resistance
can be suppressed in a structured environment. The pro-
portion of resistance increases in the on-farm population
due to the use of insecticides, as illustrated by the
increase in the proportion of the hatched area in the on-
farm population during the cultivation period. Let us
compare two cases: (a) the mortality of the on-farm popu-
lation is low and (b) the mortality of the on-farm popula-
tion is high. If we can reduce the overall survival rate of
the on-farm population, then the absolute number
of resistant individuals becomes smaller, as indicated by
the smaller hatched area of the on-farm population in
Case 2 in Figure 1c, although the proportion of resistant
individuals becomes larger within the on-farm popula-
tion. Consequently, in Case 2, the proportion of resis-
tance becomes smaller in the mixed population at the
beginning of the non-cultivation period. That is, the
global evolution of resistance over the entire field is
suppressed, although the local evolution of resistance
occurs within the on-farm population during the cultiva-
tion period.

Control measures other than insecticides are effective
in reducing the frequency of sprays. Such a decrease in
the frequency of sprays may suppress the evolution of
resistance. However, even if the frequency of sprays is
kept at the same, control measures other than insecti-
cides are obviously effective in suppressing the evolution
of resistance, as indicated in Figure 1c. If we can remove
whole crops just after harvesting them, for example, then
we may be able to suppress the evolution of resistance by
killing the resistant individuals in the on-farm
populations. If we cannot use such non-insecticide mea-
sures, then additional insecticides should be used to
increase the mortality of on-farm populations. However,
the selection pressure for the local evolution of resistance
becomes stronger if we use additional insecticides, and
hence, we should carefully explore the conditions to sup-
press the global evolution of resistance if we rely on addi-
tional insecticides.

2.2 | Basic reproduction rate of
resistance

We consider the basic reproduction rate R0ð Þ of the pro-
portion of resistance, that is referred to as the “basic
reproduction rate of resistance” for simplicity. The repro-
duction rate of a proportion, under the condition that the
proportion is extremely small, is generally given by
the reproduction rate of numerator divided by the repro-
duction rate of denominator. Hence, we can define the
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basic reproduction rate of resistance as the expected
number of offspring of a resistant individual divided by
that of a susceptible individual under the condition that
the proportion of resistance is extremely small; it is mea-
sured as the quantity per cultivation period cycle, includ-
ing one cultivation period and one non-cultivation
period. The evolution of resistance occurs if and only if
loge R0ð Þ>0 ; the evolution is suppressed if and only if
loge R0ð Þ≤ 0. This criterion of evolution is closely related
to the ESS. An ESS is defined as a phenotype such that, if
almost all individuals have that phenotype, no alternative
phenotype can invade the population (Maynard Smith,
1989, p. 126). Most classical literature discussed the ESS
as a strategy for selfish genes, while we discuss the ESS
as a strategy for farmers.

We first consider a situation in which the phenotype
of the resistance gene is always resistant to insecticides.
Let q be the proportion of individuals that remain on off-
farm fields at the beginning of the cultivation period.
Then, the proportion of the on-farm population is given
by 1�q at the beginning of the cultivation period. The
rate of increase in the on-farm population may be larger
than that of the off-farm population because on-farm
fields may provide dense monoculture of host plants and
a smaller number of natural enemies for insects. Let ρ be
the relative increase rate of the on-farm population in a
condition without insecticides, as compared to the
increase rate of the off-farm population. Then, the poten-
tial abundance of the on-farm population without insecti-
cides is given by 1�qð Þρ while that of the off-farm
population is given by q . Let us further define θ¼
q= 1�qð Þρ½ �. The parameter θ is interpreted as follows:

θ¼Potential abundance of the off-farm population
Potential abundance of the on-farm population

: ð1Þ

Let si xið Þ be the survival proportion of susceptible
insects when we used the ith type of insecticide of a loga-
rithmic dose xi in the field. Let ri xið Þ be the survival pro-
portion of resistant insects when we used the ith type of
insecticide of a logarithmic dose xi. We focus on the basic
reproduction rate of the resistance against the Type
1 insecticide. We assume that no cross-resistance occurs
between the different types of insecticides. Let n be the
total number of sprays in a cultivation period, and k be
the number of sprays of insecticide Type 1 during the cul-
tivation period. The survival rate of resistant individuals
in a cultivation period is proportional to the multiplica-
tion of the survival rate over n sprays, that is,
r1 x1ð Þð ÞkQsi xið Þ where Π indicates the multiplication of

survival rates over n�k sprays for i≠ 1 . Similarly, the
survival rate of susceptible individuals in a cultivation
period is proportional to s1 x1ð Þð ÞkQsi xið Þ . The potential

abundance of the on-farm population without insecticides
is given by 1�qð Þρ� constantð Þ at the end of the cultiva-
tion period, while the abundance of the off-farm popula-
tion is given by q� constantð Þ at the end of the
cultivation period. Then, by summing these two quanti-
ties after incorporating the on-farm mortality due to
insecticides, the total abundance of resistant individuals
at the end of the cultivation period is given by
1�qð Þρ r1 x1ð Þð ÞkQsi xið Þþq

h i
� constantð Þ� (proportion

of resistance at the beginning of the cultivation period).
Hence, the reproduction rate of resistant individuals is
proportional to r1 x1ð Þð ÞkQsi xið Þþθ at the end of the cul-
tivation period, by the definition of θ . Similarly, the
reproduction rate of susceptible individuals is propor-
tional to s1 x1ð Þð ÞkQsi xið Þþθ at the end of the cultivation
period. The basic reproduction rate of the proportion of
resistance is given by the ratio of these two quantities.

We further consider the difference in the reproduction
rate between resistant individuals and susceptible individ-
uals; resistant individuals sometimes have a smaller
reproduction rate because of the fitness cost required for
maintaining their resistance systems (e.g., Okuma et al.,
2017; Shirai, Tanaka, Miyasono, & Kuno, 1998). We
define the cost for resistance by

C¼
Increase rate of susceptible individuals

per cycle of cultivation period without insecticides
Increase rate of resistant individuals

per cycle of cultivation period without insecticides

:

ð2Þ

We have C≥ 1 and hence, we have loge Cð Þ≥ 0. Then,
we can express the logarithm of the basic reproduction
rate by

loge R0ð Þ¼ loge r1 x1ð Þð Þk
Yn�k

si xið Þð Þþθ

" #

� loge s1 x1ð Þð Þk
Yn�k

si xið Þð Þþθ

" #
� loge Cð Þ: ð3Þ

The evolution of resistance occurs if and only if
loge R0ð Þ>0.

2.3 | Various designs of spraying

We can consider various spraying designs, such as those
indicated in Figure 2. Spray designs can be categorized
using several axes. We call the design “uniform” if the
same pattern of spraying is used for all cultivation periods,
while we can call the design “aggregated” if the sprays of a

YAMAMURA 193



specific type of insecticide are aggregated in some cultiva-
tion periods. We call the design “repeated” if the same
type of insecticide is used twice (or more) in the same cul-
tivation period, while we call the design “rotational” if
two or more types of insecticides are used in the same cul-
tivation period. The meaning of the term “rotation” used
in our paper is somewhat different from that used by
IRAC (Sparks & Nauen, 2015). We will later explain about
why we should adopt this modified definition.

Figure 2a shows the basic pattern of spraying, where
insecticide Type 1 is sprayed once in each cultivation
period. Figure 2b shows an aggregated design of spraying.
The average number of sprays of the Type 1 insecticide
was kept the same as that shown in Figure 2a, but the
frequency of sprays was aggregated in half of the cultiva-
tion periods. Figure 2b also belongs to a repeated design
for the Type 1 insecticide. Figure 2c corresponds to a uni-
form repeated design, where Type 1 insecticide is sprayed
twice in all cultivation periods. The three panels, Figure
2d, Figure 2e and Figure 2f, correspond to rotational
applications where two or more types of insecticides were
used in the same cultivation period. Please note that the
difference in the order of sprays within a cultivation
period has no influence on the result.

In principle, the basic reproduction rate of resistance
increases with increasing total number of sprays. Therefore,
if we want to elucidate the mechanism for preventing the
evolution of resistance, we should separate the influence of
the spray pattern from the influence of the spray frequency.
Thus, we should first examine the influence of aggregation
when the total number of sprays is kept constant. If we
keep the average number of sprays of Type 1 insecticide at
one per cultivation period, Equation (3) is modified to

loge R0ð Þ¼ 1
k
loge r1 x1ð Þð Þk

Yn�k

si xið Þð Þþθ

" #

� 1
k
loge s1 x1ð Þð Þk

Yn�k

si xið Þð Þþθ

" #
� loge Cð Þ,

ð4Þ

because the selection works only for 1=k of the cultiva-
tion periods.

The number of repeated applications of Type 1 insecti-
cide, which is denoted by k, may be changed to several
patterns. Let nj and kj be the jth pattern of n and k
(j¼ 1,2,…,m ), respectively, and wj be the proportion
(weight) of the jth pattern. Let θj be the jth pattern of θ ;

(a) Uniform application per cultivation period

Cultivation period Cultivation period Cultivation period Cultivation period

1 1 1 1

(b) Aggregated repeated application per cultivation period 

Cultivation period Cultivation period Cultivation period Cultivation period

1 1 1 1

(c) Uniform repeated application per cultivation period 

Cultivation period Cultivation period Cultivation period Cultivation period

1 1 1 1 1 1 1 1

Cultivation period Cultivation period Cultivation period Cultivation period

(d) Uniform rotational application of multiple insecticides (4 insecticides, 4 sprays)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

Cultivation period Cultivation period Cultivation period Cultivation period

(f) Uniform repeated rotational application  (2 insecticides, 4 sprays)

Cultivation period Cultivation period Cultivation period Cultivation period

(e) Aggregated repeated rotational application  (4 insecticides, 4 sprays)

3 3 4 4 1 1 2 2 3 3 4 4

FIGURE 2 Examples of temporal

arrangements of sprays. Arrows indicate

the time of spraying. The different

numbers inside the circles indicate the

type of insecticide. (a), (b) and

(c) correspond to the designs using a

single type of insecticide while (d),

(e) and (f) correspond to the designs

using multiple types of insecticides. The

corresponding models are as follows.

(a) n¼ k¼ 1 in Equation (3) or (4);

(b) n¼ k¼ 2 in Equation (4);

(c) n¼ k¼ 2 in Equation (3);

(d) n¼ 4,k¼ 1 in Equation (3) or (4);

(e) n¼ 4,k¼ 2 in Equation (4);

(f) n¼ 4,k¼ 2 in Equation (3)
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the quantity of θ may seasonally change depending on
the seasonal change in the relative increase rate (ρ) of the
on-farm population. Then, we obtain

loge R0ð Þ¼
Xm
j¼1

(
wjloge

�
r1 x1ð Þð Þkj

Ynj�kj

si xið Þð Þþθj

�

�wjloge

�
s1 x1ð Þð Þkj

Ynj�kj

si xið Þð Þþθj

�)
� loge Cð Þ:

ð5Þ
Equation (3) corresponds to a special case of Equation

(5) where m = 1, wj = 1, while Equation (4) corresponds
to a special case of Equation (5) where m = 1, wj = 1/k.

2.4 | Dose-survival curves

We can calculate the basic reproduction rate using Equa-
tion (5) for any form of dose-survival curves, ri xið Þ and
si xið Þ, but here, we use a logarithmic probit model, which
is a typical form of a dose-survival curve, to demonstrate
the calculation. The survival rate of a susceptible individ-
ual for the ith type of insecticide is given by a function of
the logarithmic dose, x:

si xið Þ¼Φ �a�bxið Þ, ð6Þ

where Φ indicates the cumulative distribution func-
tion of the standard normal distribution and a and b are
constants. The biological foundation of Equation (6) is
shown in Supporting Information S1. The latest version of
all Supporting Information is placed at http://cse.naro.affrc.
go.jp/yamamura/Optimal_rotation_of_insecticides.html.
We use data from Willrich, Leonard, and Cook (2003).
They examined the field mortalities of the adult brown
stink bug, Euschistus servus (Say), at different doses of
dicrotophos, an organophosphate insecticide, in the labora-
tory (on a cotton leaf) and fields (on the cotton boll of a liv-
ing plant). They suggested that the number of live insects
divided by the total number of observed insects at doses of
exp xið Þ¼ 0.28, 0.45 and 0.45 (unit: kg ai/ha) were 27/40,
34/40 and 33/43, respectively. The probit regression of
Equation (6) yields the following estimates: â¼ 1:56 and b̂¼
0:87, where a hat (̂ ) indicates the corresponding estimate.

We further consider a case in which the survival
curve of resistant individuals is given by a parallel move-
ment of that of susceptible individuals:

ri xið Þ¼Φ �a�b xi�δið Þð Þ, ð7Þ

where δi indicates the amount of resistance for the ith
type of insecticide. Uchiyama and Ozawa (2017)

examined dose-survival curves for diamide insecticides,
chlorantraniliprole, in the smaller tea tortrix, Adoxophyes
honmai Yasuda. The lethal concentration 50 values
(LC50) for the resistant and susceptible strains were 48.2
and 1.33 ppm, respectively. The ratio is 48:2=1:33¼ 36:2.
Then, we use δi ¼ loge 30ð Þ as an example.

Estimates of the dose-survival curves in the field are
required for calculating the effect of insecticide rotation.
However, it may be troublesome to estimate the curves
for every combination of insecticides and crop types. If
we know the general influence of spatial heterogeneity in
the field on the dose-survival curves, we will be able to
estimate the dose-survival curves in the field from the
corresponding dose-survival curves examined in the labo-
ratory. Such a calculation procedure is also indicated in
Supporting Information S1.

2.5 | Fitness cost of resistance genes

We must specify the parameter C , which corresponds to
the fitness cost for maintaining the resistance per cycle of
the cultivation period, to calculate loge R0ð Þ . Let c be the
ratio of the increase rate of susceptible individuals to
resistant individuals per generation without insecticides.
The off-farm population may reproduce also during the
non-cultivation period. No insecticide is applied during the
non-cultivation period, and hence only the resistance cost
is working during the non-cultivation period. If one more
generation emerges in the non-cultivation period, for
example, one more loge cð Þ is added to loge Cð Þ. Let gon and
goff be the number of generations in a cultivation period
and a non-cultivation period, respectively. Then, we have
the relation loge Cð Þ¼ gonþgoffð Þloge cð Þ. Fitness cost may
be fairly large for several cases. The spinosad-resistant
strain of Spodoptera frugiperda (J. E. Smith) represents a
49% reduction in the number of generated females as
compared with susceptible strain (Okuma et al., 2017). It
indicates loge cð Þ¼ 0:7 per generation. For simplicity, we
use loge Cð Þ¼ 0:1 in the following examples.

2.6 | Relative abundance of the off-farm
population

Estimating the relative potential abundance of the off-
farm population, denoted by θ, may be difficult in several
cases. We must estimate the parameter θ for each set of
on-farm and off-farm fields; the quantity of θ will change
depending on the place. Let don and doff be the density of
individuals per unit area that are averaged over on-farm
and off-farm, respectively, after the dispersal at the begin-
ning of the cultivation period. Let Aon and Aoff be the
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area of on-farm and off-farm fields, respectively, which
are defined in Figure 1a. Then, the proportion of individ-
uals that remain in the off-farm fields at the beginning of
the cultivation period, which is denoted by q , is calcu-
lated by

q¼ doffAoff

doffAoff þdonAon
: ð8Þ

The quantities of don, doff , Aon and Aoff should be esti-
mated via field observations after the completion of dis-
persal at the beginning of the cultivation period. If the
apparent area of off-farm field is very large, however,
insects may not be mixed well within the off-farm field.
In such cases, we should identify the “effective area” of
off-farm field within which insects are well mixed during
the non-cultivation period. Then, such an effective area
of off-farm field should be used as Aoff in the calculation.
On the other hand, the relative increase rate of individ-
uals (ρ ) of the on-farm population without insecticide
should be estimated by observing the increase rates in
the number of individuals in the off-farm and on-
farm populations. Then, we will be able to estimate θ by
θ̂¼ q̂= 1� q̂ð Þρ̂½ � . Insect outbreaks are frequently seen in
cultivation fields rather than natural fields (Elton, 1958). The
dense monoculture in cultivation fields increases the survival
rate of herbivores (Yamamura, 1989, 2002a; Yamamura &
Yano, 1999). Hence, the quantity of ρ may be sometimes
very large. We use the parameters q¼ 0:5 and ρ¼ 4 (i.e.,
θ¼ 0:25) in the following calculations, for simplicity.

If we know the dispersal curve that describes the dis-
tribution of the dispersal distance of insects, then we may
be able to estimate q without conducting the field obser-
vation on the density of individuals; we can estimate the
quantity of q by summing the effective off-farm area
weighted by the dispersal curve. A mark-recapture
method is usually used for estimating the dispersal curves
of insects, but it is sometimes difficult to mark small
insects. Some internal marks may be useful in such cases.
Yamamura (2020) used the virus, PPV, as an internal
marker for estimating the dispersal curve of aphids and
estimated that 50% of dispersing aphids land within 84m,
by using the gamma-model of Yamamura (2002b, 2004)
and Yamamura et al. (2007) that describes the non-ran-
dom movements of insects. Supporting Information S2
indicates how we can estimate q using the dispersal
curve.

The resistance gene can also be used as an internal
marker in estimating the quantity θ, if the resistance gene
is already prevalent in the field; that is, a naturally mar-
ked population already exists without artificially releas-
ing them. We cannot apply the calculation of R0 to the
resistance gene that is already prevalent, but we can

calculate R0 for the next insecticide that will replace the
current insecticide if we could estimate the parameter θ
from the current insecticide. Let η be the abundance of
the effective off-farm population divided by that of the
on-farm population at the end of a cultivation period. Let
ψ1,on be the proportion of resistance in the on-farm field
at the end of the cultivation period. Let ψ2,on be the pro-
portion of resistance in the on-farm field at the beginning
of the next cultivation period. If no additional generation
occurs during the non-cultivation period, that is, if goff ¼
0, we have an inequality about η:

η≥
ψ1,on

ψ2,on

� �
�1: ð9Þ

Thus, η̂¼ ψ̂1,on=ψ̂2,on

� ��1 is a conservative estimate
of η in this case in a sense that we do not underestimate
the possibility of evolution of resistance if we used this
estimate of η. The quantity of η corresponds to θ/(average
insecticidal survival rate of individual in a cultivation
period). Hence, we can estimate θ in this situation. Fur-
ther explanation is given in Supporting Information S2.

3 | EXAMPLES OF
CALCULATIONS

3.1 | Single type of insecticide

We first examine the influence of multiple applications of a
single type of insecticide on the basic reproduction rate
before examining the influence of multiple applications of
multiple types of insecticides. This corresponds to the cases
of n¼ k in Equation (3) or (4). Figure 3a indicates how
the logarithm of the basic reproduction rate changes if
we increased the number of sprays (n ) in a cultivation
period, keeping the average number of sprays to one. This
design is a type of aggregated design. The comparison cor-
responds to the comparison between Figure 2a and Figure
2b. The quantity of loge R0ð Þ was calculated by Equation
(4) for n¼ 1,2,…,6 using the parameters described above.
In contrast, Figure 3b indicates how the logarithm of the
basic reproduction rate changes if we increased the num-
ber of sprays of Type 1 in all cultivation periods. This
design is a type of uniform design. The comparison corre-
sponds to the comparison between Figure 2a and Figure
2c. The quantity of loge R0ð Þ was calculated using
Equation (3). The frequency of sprays of the Type 1 insec-
ticide increases with increasing n in this design.

The bold curve in Figure 3a or Figure 3b indicates the
single use of a single type of insecticide; it corresponds to
Figure 2a. The quantity of loge R0ð Þ increases with
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increasing logarithmic dose if the dose is low, while it
decreases with increasing logarithmic dose if the dose is
high. In an unstructured environment where no off-farm
population exists (i.e., if θ¼ 0), loge R0ð Þ increases mono-
tonically with increasing logarithmic dose. The proof is
given in Supporting Information S3. Thus, we cannot pre-
vent the evolution of resistance in an unstructured envi-
ronment, except for a mosaic application that we will
discuss later. In contrast, in a structured environment,
loge R0ð Þ decreases with increasing logarithmic dose if the
dose is high. The proof is given in Supporting Informa-
tion S4. The influence of insecticide is multiplicative
while the influence of off-farm individual is additive
within the square brackets in Equation (3). Hence, if the
mortality by insecticide is large, the influence of multipli-
cative part nearly vanishes; the additive part almost con-
trols the results. In other words, nearly all on-farm

individuals including resistant and susceptible individ-
uals are killed by the high dose; the remaining on-farm
population is zero or very small. Then, the off-farm popula-
tion almost solely creates the on-farm population of the
next cultivation period. That is, the fitness of resistant indi-
viduals (excluding the fitness cost) becomes identical to
that of susceptible individuals if the dose is very high. In a
structured environment, therefore, we can find the loga-
rithmic dose over which the evolution of resistance is
prevented if loge Cð Þ>0. In our example, the bold curve in
Figure 3a or Figure 3b indicates that the evolution of
resistance is prevented if we use a logarithmic dose
higher than 4 for the design of single spraying (n¼ 1 )
because we have loge R0ð Þ<0 for x >4. However, we can-
not use such a high dose of insecticide.

The comparison between the curves in Figure 3a indi-
cates that we can decrease the quantity of loge R0ð Þ by
increasing the number of sprays (n) in a cultivation
period, keeping the total number of sprays at a constant,
except for a range of low doses. The proof is given in
Supporting Information S5. However, the effect of the
number of sprays is generally limited if we used only a
single type of insecticide. Willrich et al. (2003) used two
doses in the field; the doses are shown by vertical dotted
lines accompanied by the letters L and H in Figure 3a.
We can decrease the quantity of loge R0ð Þ by increasing
the number of sprays (n) in a cultivation period, but we
cannot prevent the evolution of resistance even if
we sprayed n¼ 6 times in a cultivation period for 1/6 of
the cultivation periods if we adopted the dose used by
Willrich et al. (2003), because the curve for n¼ 6 still lies
in a positive area when the logarithmic dose is L or H in -
Figure 3a. The use of other types of insecticides is neces-
sary in such doses to prevent the evolution of resistance.

The comparison of curves in Figure 3b indicates how
the logarithm of the basic reproduction rate changes if we
increase the number of sprays of Type 1 in all cultivation
periods. Equations (3) and (4) indicate that, when we use a
single type of insecticide (i.e., when n¼ k ), we can calcu-
late the quantity of loge R0ð Þþ loge Cð Þ of a uniform design
by multiplying n to the corresponding quantity of an
aggregated design. We already proved in Supporting
Information S5 that the quantities of loge R0ð Þ of different
n values nearly coincide if the dose is low in an aggre-
gated design. Therefore, for a uniform design, the curves
of different n values cross each other at some logarithmic
doses, as indicated by Figure 3b. Consequently, we can
find that loge R0ð Þ increases with increasing number of
sprays (n) if the dose is low (e.g., x¼�2:5 as indicated by
the dotted vertical line) while loge R0ð Þ decreases with
increasing number of sprays (n) if the dose is high
(e.g., x¼ 1 as indicated by the dotted vertical line). Thus,
the increase in the number of sprays (n) in a cultivation
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FIGURE 3 Influence of the number of sprays (n) on the basic

reproduction rate of resistance when a single type of insecticide is

used (i.e., when n¼ k). (a) Average number of sprays per

cultivation period is fixed at 1. It corresponds to the comparison

between Figure 2a and Figure 2b. (b) The same set of sprays is used

for all cultivation periods. It corresponds to the comparison

between Figure 2a and Figure 2c. L and H indicate two doses that

were used by Willrich et al. (2003). L: Lower dose (0.28 kg ai/ha),

H: Higher dose (0.45 kg ai/ha). The following parameters were used

in Equations (3) and (4): a¼ 1:56,b¼ 0:87,δ1 ¼ loge 30ð Þ,θ¼
0:25, loge Cð Þ¼ 0:1
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period effectively prevents the evolution of resistance if the
dose is sufficiently high, but the increase in the number of
sprays rather accelerates the evolution if the dose is low.

3.2 | Multiple types of insecticides with
a fixed number of sprays

We next examine the spraying design using multiple types
of insecticides, since Figure 3 indicated that the design
using a single type of insecticide cannot easily prevent the
evolution of resistance in our example, that is, we cannot
easily keep loge R0ð Þ≤ 0 for the design using a single type
of insecticide. We assume that the dose-survival curves of
resistant and susceptible individuals are the same for all
types of insecticides, for simplicity; we use the same
parameters described above for all dose-survival curves.

Figure 4a indicates the influence of the number (k) of
repeated uses of the Type 1 insecticide for aggregated
designs. We consider a design where the number of
sprays in a cultivation period is fixed at n¼ 4 for conve-
nience. This corresponds to the comparison between
Figure 2d and Figure 2e. The curve for k¼ 4 in Figure 4a
corresponds to a design where the Type 1 insecticide is
repeatedly sprayed four times in some cultivation periods
while Type 1 insecticide is used only 1/4 of the total culti-
vation periods. The curve for k¼ 4 is the same as the
curve for n¼ 4 in Figure 3a. We can find from Figure 4a
that we have loge R0ð Þ<0 for k≤ 2 if we adopted the dose
H. This indicates that the repeated use of insecticides is per-
mitted up to two times in each cultivation period if we used
the dose H. The spray design of k¼ 1 can be expressed as
1,2,3,4f g 1,2,3,4f g , where the different numbers indi-
cate different types of insecticides; the braces f g indicate
one cultivation period cycle. The spray design of k¼ 2 is
expressed as 1,1,2,2f g 3,3,4,4f g 1,1,2,2f g 3,3,4,4f g . The
design of k¼ 2 will be optimal because only two types of
insecticides are used for each cultivation period. The
designs of k¼ 3, such as 1,1,1,4f g 2,2,2,4f g 3,3,3,4f g
1,1,1,4f g 2,2,2,4f g 3,3,3,4f g , are not permitted; the evo-
lution of resistance occurs if we used k¼ 3. On the other
hand, if we adopted the lower dose L, we have
loge R0ð Þ<0 only for k¼ 1. Hence, the evolution of resis-
tance is prevented only if we adopted the spray design of
1,2,3,4f g 1,2,3,4f g when we adopted the lower dose L.

Figure 4b indicates the quantity of loge R0ð Þ in uniform
designs where the same set of sprays is used for all culti-
vation periods. This corresponds to the comparison
between Figure 2d and Figure 2f. The curve for k¼ 4 is
the same as the curve for n¼ 4 in Figure 3b. The total
number of sprays of the Type 1 insecticide increases in
proportion to k in these designs, and hence, the quantity
of loge R0ð Þ is larger than that in Figure 4a for k>1 .

Please note that the vertical axis is different between
Figure 4a and Figure 4b. We have loge R0ð Þ<0 only for
k¼ 1 in Figure 4b for both doses, L and H. In these uni-
form designs, therefore, we can prevent the evolution of
resistance only if we adopted the design of
1,2,3,4f g 1,2,3,4f g, even if we used the higher dose H.

3.3 | Multiple types of insecticides with
a fixed amount of total mortality

We compared loge R0ð Þ for a fixed number of sprays (n) in
the above section for the purpose of explanation, but the
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FIGURE 4 Influence of the number of repeated uses (k) of the

same type of insecticide on the basic reproduction rate of resistance.

Total number of sprays in a cultivation period was fixed at n¼ 4. (a)

Average number of sprays of the Type 1 insecticide per cultivation

period was fixed at 1. It corresponds to the comparison between

Figure 2d and Figure 2e. (b) The same set of sprays was used for all

cultivation periods. It corresponds to the comparison between

Figure 2d and Figure 2f. The curve for k¼ 4 indicates the cases

where the same type of insecticide was used for all four sprays in

the same cultivation period. The curve of k¼ 1 indicates the cases

where a different type of insecticide was used for each of the four sprays

in the same cultivation period. The meanings of L and H are the same

as those in Figure 3. The same parameters were used as in Figure 3
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number of sprays will be rather determined by
the abundance of insects in the field. If the abundance is
large, then the total mortality must be increased by
increasing the number of sprays (n). Hence, we should
calculate the optimal design of sprays for a given amount
of mortality. Figure 5 indicates the logarithmic basic
reproduction rate, loge R0ð Þ , calculated for uniform spray
designs, for sets of the number of sprays per cultivation
period (n) and the number of repeated applications (k).
The number of sprays (n) was calculated to satisfy the
required mortality expressed by �loge survival rateð Þ . To
enhance the interpretability of the graph, we plotted the
quantity of loge R0ð Þ calculated for �loge survival rateð Þ by
a discrete step of 0.1.

Figure 5a indicates the quantity of loge R0ð Þ for the
logarithmic dose x¼H¼ loge 0:45ð Þ , which is the higher
dose used by Willrich et al. (2003). The upper bound of
the quantity of loge R0ð Þ, which corresponds to n¼ k, was
nearly constant in this case, even when we changed the
mortality. This corresponds to the characteristics of
the curves with the H dose in Figure 3b; the quantity of
loge R0ð Þ for the dose H was nearly constant even when
we changed the number of sprays (n) in Figure 3b. If we
want to realize a mortality of �loge survival rateð Þ¼ 6, for
example, then the required number of sprays would be
n¼ 4 per cultivation period. This case was already dis-
cussed in Figure 4b; we must use different types of insec-
ticides for each of the four sprays to prevent the
evolution of resistance in this case.

We must realize a larger amount of mortality by
increasing the number of sprays (n) when the abundance
of insects is large. If a mortality of �loge survival rateð Þ¼ 9 is
required, for example, then the required number of
sprays would be n¼ 6 if we used a logarithmic dose of
x¼H¼ loge 0:45ð Þ , as indicated in Figure 5a. We have
loge R0ð Þ<0 for k≤ 3 in this case, and hence, the repeated
use of the same type of insecticide is permitted up to
three times. Thus, we can use a design such as
1,1,1,2,2,2f g 1,1,1,2,2,2f g using two types of insecti-
cides. This will be the optimal design of spraying in this
case to achieve the required mortality, preventing the
evolution of resistance.

We should reduce the number of sprays when the
abundance of insects is small, so that we can avoid
the negative influence of sprays on natural enemies or
other organisms living in the on-farm fields. This will be
an important principle when we are promoting integrated
pest management (IPM). If we want to realize a smaller
mortality such as �loge survival rateð Þ¼ 4 , then the
required number of sprays should be n¼ 3, as indicated
in Figure 5a. In this case, however, we cannot achieve
loge R0ð Þ≤ 0 even when we adopted k¼ 1; we cannot pre-
vent the evolution of resistance even if we used a differ-
ent type of insecticide for each of the three sprays. We
should adopt a larger number of sprays, such as n¼ 4 if
we want to prevent the evolution of resistance, which
contradicts the principle of IPM. Thus, IRM sometimes
contradicts IPM. In such cases, we can consider the use
of different doses of insecticides. Figure 5b indicates the
quantity of loge R0ð Þ for a logarithmic dose of x¼L¼
loge 0:28ð Þ, which is the lower dose used by Willrich et al.
(2003). If we want to realize a mortality of
�loge survival rateð Þ¼ 4 , then the required number of
sprays should be n¼ 4. In this case, we have loge R0ð Þ<0
when we adopted k¼ 1: Hence, we can prevent the evo-
lution of resistance if we used a different type of insecti-
cide for each of the four sprays.
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FIGURE 5 Influence of the required amount of mortality,

�loge survival rateð Þ, on the optimal uniform design of sprays. The

logarithmic basic reproduction rate, loge R0ð Þ, was plotted for sets of

the number of sprays per cultivation period (n) and the number of

repeated applications (k) for the uniform spray designs. The

required number of sprays (n) is shown in the upper side of graph;

the quantity of the required n increases with increasing required

amount of mortality. (a) Higher dose (0.45 kg ai/ha). (b) Lower dose

(0.28 kg ai/ha). Other parameters are the same as those used in

Figure 3. The combination of n and k that satisfies loge R0ð Þ≤ 0

should be used for preventing the evolution of resistance, achieving

the required amount of mortality
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4 | INFLUENCE OF GENETIC
SYSTEMS

We assumed a situation where the phenotype of the resis-
tance gene is always resistant to insecticides in the above
argument, for simplicity. This theory is directly applica-
ble to haploid insects that reproduce asexually or diploid
insects in which the resistance gene is dominant. We can
further show that the above argument is applicable to
various genetic systems, in principle. We calculate the
expectation of the basic reproduction rate of the propor-
tion of resistance for various mating systems. Random
binomial fluctuation will arise in the actual dynamics for
the proportion of resistant phenotype as well as the pro-
portion of resistance gene. We currently ignore such
demographic fluctuations, for simplicity.

4.1 | Incomplete dominance gene

If the resistance gene is incompletely dominant in diploid
insects, two types of resistance phenotypes will appear,
which correspond to the homozygote and heterozygote of
the resistance gene. In calculating the basic reproduction
rate, we must consider a situation in which the propor-
tion of the resistance gene is extremely small. Most resis-
tance genes are included in heterozygotes in such
situations. Hence, we can calculate the basic reproduc-
tion rate by using the dose–response curve (and the fit-
ness cost) of heterozygote individuals in this case, in
principle. Then, the evolution of resistance occurs if and
only if loge R0ð Þ>0 for the loge R0ð Þ calculated by Equa-
tion (5) using the parameters of the heterozygote. How-
ever, if some kinds of assortative mating are performed
locally, homozygote individuals emerge even if the pro-
portion of resistance is extremely small. In such cases, we
should use the parameters for homozygote individuals
instead of heterozygote individuals to avoid the underes-
timation of the possibility of evolution.

4.2 | Recessive gene

The calculation of the basic reproduction rate becomes
complicated if the resistance gene is recessive in a diploid
insect because an individual having a resistance gene
does not always indicate resistance. We first consider a
special case in which only one generation arises in each
cultivation period. Let us assume that the resistance
phenotype appears at random for u cultivation periods
among the U total cultivation periods. The component of
loge R0ð Þ equals 0 in a cultivation period where the resis-
tance phenotype does not appear because the increasing

rate of the resistance gene is the same as that of the sus-
ceptible gene in that cultivation period. Hence, the calcu-
lation of loge R0ð Þ corresponds to a sampling problem in
which we draw a sample of size u at random from the
population of size U. The expectation of the sum of a ran-
dom sample of size u is larger than 0 if and only if the
sum of all U items of a population is larger than 0 (see,
e.g., Cochran, 1977). Therefore, the evolution of resis-
tance occurs if and only if loge R0ð Þ>0 for the loge R0ð Þ
calculated by Equation (5). However, if the insect repeats
two or more generations in each cultivation period, then
the resistance phenotype will only appear at a part of
generations in a cultivation period, and hence, the resis-
tance gene will not experience k times sprays of the Type
1 insecticide during the cultivation period. Consequently,
the actual quantity of loge R0ð Þ becomes smaller. Hence,
we can say that the evolution of resistance does not occur
if we know loge R0ð Þ≤ 0 for the loge R0ð Þ calculated by
Equation (5), but we cannot say that the evolution of
resistance occurs even if we know loge R0ð Þ>0 for the
loge R0ð Þ calculated by Equation (5) unless further condi-
tions (such as those we see later) are specified.

If the number of applications of the Type 1 insecticide in
one generation is fixed at a constant, we can calculate the
basic reproduction rate by replacing the number of applica-
tions of the Type 1 insecticide in one cultivation period in
Equation (5) by the number of applications of the Type 1
insecticide in one generation; this is because the resistance
phenotype will arise at most once in a cultivation period
when the frequency of the resistance gene is extremely
small. Let hj be the number of applications of the Type 1
insecticide that is applied in one generation in the jth
pattern of sprays. Equation (5) should be modified to

loge R0ð Þ¼
Xm
j¼1

gon,j

(
wjloge r1 x1ð Þð Þhj s1 x1ð Þð Þkj�hj

Ynj�kj

si xið Þð Þþθj

" #

�wjloge s1 x1ð Þð Þkj
Ynj�kj

si xið Þð Þþθj

" #)
� loge Cð Þ,

ð10Þ

where gon,j indicates the number of generations in a
cultivation period, which may change depending on the
conditions such as the temperature. The evolution of
resistance occurs if and only if loge R0ð Þ>0 for the
loge R0ð Þ calculated by Equation (10) in this case.

If some kinds of assortative mating are performed
locally, the resistance phenotype may arise twice or more
in a cultivation period even if the frequency of the resis-
tance gene is extremely small. In such cases, we cannot
use Equation (10) even if the number of applications of
the Type 1 insecticide in one generation is fixed at a con-
stant. Then, we should use Equation (5) as a conservative
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approximation to avoid the underestimation of the possi-
bility of evolution.

5 | DISCUSSION

We proposed a procedure to calculate the optimal
spraying design to prevent the evolution of resistance,
that is, the ESS for farmers. We can prevent the evolution
of resistance only if loge Cð Þ is larger than 0, that is, only if
some fitness cost exists for maintaining the resistance. How-
ever, such a cost has not been well studied for many prob-
lems of resistance. We cannot calculate the condition for
preventing the evolution of resistance in such cases, but we
can use a pre-determined quantity of loge Cð Þ as an index to
indicate the strength of IRM. If we want to strongly delay
the evolution of resistance, that is, if we want to strongly
extend the “useful life” of a new insecticide, then we
should calculate the spraying design by using a small
quantity of loge Cð Þ that is close to 0. Such a spraying
design will be characterized by (a) a higher dose, (b) a
larger number of sprays (i.e., a larger n ), (c) a smaller
number of repeated uses of the same type of insecticide
(i.e., a smaller k ) and (d) a smaller quantity of on-farm
fields (i.e., a larger θ ). We can conversely calculate the
threshold quantity of loge Cð Þ above which we can pre-
vent the evolution by the spray design we are currently
using. If such a threshold cost proves to be too large, we
should consider revising our current spraying design.

The actual speed of evolution greatly varies
depending on the genetic systems and the frequency of
resistance genes, as is illustrated in Supporting Informa-
tion S6 (Beverton & Holt, 1957). Simulation experiments
will be required if we want to calculate the evolutionary
speed, and hence, we cannot easily control the speed of
evolution explicitly in most cases. In contrast, we can
explicitly control the possibility of evolution by using the
condition of loge R0ð Þ≤ 0 , as discussed above. Therefore,
the basic reproduction rate will be practically more useful
than the speed of evolution as a measure for judging the
effects of different strategies against the evolution of
resistance. The quantities of the relative increase rate of
the on-farm population per cultivation period (ρ) and the
cost for resistance per cultivation period (C) will change
if the number of generations in a cultivation period
changes due to the change in temperature depending on
the season and year. We should judge the possibility of
evolution by calculating the temporal mean of loge R0ð Þ
over various ρ and C in such situations.

Several modifications may be required when applying
the model to actual fields. For example, we assumed that
the insects on off-farm and on-farm fields are mutually
mixed only at the end of the cultivation period for

simplicity. The lack of exchange between off-farm and
on-farm populations during the cultivation period is a
critical assumption. Such an assumption may be approxi-
mately appropriate for several insects, such as the small
brown planthopper L. striatellus in Kanto district, Japan.
The planthoppers of the overwintering generation live in
the ridge of paddy fields in winter. They enter wheat or
barley fields in May, and first-generation adults in June
enter paddy fields in which they live three or four genera-
tions. Several other insect species may disperse before the
end of the cultivation period. Our model is still applicable
to such insects, but we must change the interpretation of
the model. If the insects in on-farm fields disperse to mix
with the insects in off-farm fields at the end of each gen-
eration, for example, then one cycle of the cultivation
period in the model should be interpreted as one genera-
tion. Such a generation model was intensively discussed
by Sudo, Takahashi, Andow, Suzuki, and Yamanaka
(2017). Our model will not be applicable, however, if
insects are continuously dispersing across on-farm and
off-farm fields within each generation. The resistance
gene will not experience sprays for specified times in
such cases, and hence we may not be able to prevent the
evolution of resistance.

The interpretation of the model should also be modified
if we adopt a “mosaic” application of insecticides, where
different types of insecticides are applied in the different
spatial areas of on-farm fields. The mosaic application will
be especially useful when no off-farm fields exist. Let us
consider a case where we provide two types of mosaic pat-
ches, one of which does not include Type 1 insecticide, in a
situation where no off-farm fields exist. As an example, we
assume a uniform mosaic application where the half of the
mosaic patches have a uniform design of 1,1f g 1,1f g���
while the remaining half patches have a uniform design
of 2,2f g 2,2f g� � � . We can alternatively assume an out-of-
phase aggregated mosaic application where the half of
the mosaic patches have an aggregated design of
1,1f g 2,2f g 1,1f g 2,2f g� � � while the remaining half pat-
ches have an aggregated design of 2,2f g 1,1f g
2,2f g 1,1f g�� � . Let us assume that two types of mosaic
patches are separated by barriers during the cultivation
period, but that the populations are mixed well at the
end of the cultivation period by removing the barriers.
Then, we can calculate the logarithmic basic reproduc-
tion rate from Equation (5) assuming the spray design of
1,1f g 2,2f g 1,1f g 2,2f g� � � , by substituting θ¼ 0:5 which
was calculated from q¼ 0:5 and ρ¼ 1 . An out-of-phase
aggregated mosaic application will be more robust than a
uniform mosaic application in certifying θ¼ 0:5, because
the bias caused by the spatial heterogeneity in ρ will
be reduced in an out-of-phase aggregated mosaic
application.
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IRAC recommends “block rotation,” where a block
(or a window) is defined as a pest generation or a crop
growth stage (Sparks & Nauen, 2015). In this strategy,
one or more applications of the same insecticide are per-
mitted within a block. However, a compound from the
same MoA group as the prior block is not permitted to be
treated in the next block. If the insects are mixed well at
the end of each block, then a block corresponds to a culti-
vation period in our model. In this case, a block rotation
of IRAC corresponds to an aggregated repeated applica-
tion as for a specified type of insecticide in our definition
(e.g., Figure 2b). The comparison between the curves in
Figure 4a indicates that the quantity of loge R0ð Þ increases
with increasing number of repeated uses (k) of the same
sprays in a cultivation period, except for a range of low
doses. The proof is given in Supporting Information S7.
Thus, the basic reproduction rate of an aggregated
repeated spray such as 1,1f g 2,2f g� � � 1,1f g 2,2f g� � � is
larger than that of the uniform rotational spray such as
1,2f g 1,2f g� � � 1,2f g 1,2f g� � � . That is, the block rotation
accelerates the evolution of resistance instead of
preventing the evolution of resistance in this case. Thus,
a block rotation should not be recommended. It should
be noted that a block rotation might cause an erroneous
impression because, for example, the basic reproduction
rate of the Type 1 insecticide for a design of 1,1f g 2,2f g� � �
1,1f g 2,2f g� � � is much smaller than that of
1,1f g 1,1f g� � � 1,1f g 1,1f g� � � , as indicated by the compari-
son of the n¼ 2 curves in Figure 3a and Figure 3b. How-
ever, such a comparison is not meaningful; the total
number of sprays should be the same for all types of
insecticides, in principle, because we are preventing the
evolution of resistance for all types of insecticides. Hence,
the basic reproduction rate of the block rotational design
of 1,1f g 2,2f g� � � 1,1f g 2,2f g� � � should be compared with
that of the sequential repeated use of the same sprays
1,1f g 1,1f g� � � 2,2f g 2,2f g� � �. Then, the basic reproduction
rates are obviously the same; a block rotation has no
effect in this case. In addition, please be careful about the
difference in terminology. An aggregated repeated appli-
cation such as 1,1f g 2,2f g� � � 1,1f g 2,2f g� � � is called a rota-
tional application by IRAC, while the effect of a uniform
rotational application such as 1,2f g 1,2f g� � � 1,2f g 1,2f g� � �
is theoretically the same as that of the mixture applica-
tion if no interaction exists between insecticides. If we
use the terminology of IRAC, therefore, we can say that a
mixture application is theoretically superior to a rota-
tional application; a rotational application cannot be an
effective measure in IRM in this terminology. We should
therefore define the term “rotation” as the sequential
exchange of insecticides that is performed within an
interval between the consecutive two dispersal events of
insects.

We will be able to objectively calculate the optimal
design of spraying using Equation (5). However, to apply
the method appropriately, we should also intuitively
understand the mechanism for suppressing the evolution
of resistance. In the structured environment shown in
Figure 1, the dose of the insecticide is spatially heteroge-
neous in the sense that the dose is zero in off-farm fields,
while it is non-zero in on-farm fields. On the other hand,
the spatial heterogeneity in the dose of insecticides
increases the basic reproduction rate of resistance, as illus-
trated in Figure S1. Thus, the spatial heterogeneity in a
structured environment is quite different from the spatial
heterogeneity we usually refer to for the dose of insecti-
cides. The dose of insecticides in a structured environment
is bifurcated; that is, insects in a structured environment
scarcely encounter the intermediate dose, which yields
many individuals with resistance. We cannot easily modify
the environmental structure in most cases, but we should
further consider conditions that enhance such bifurcation
characteristics in the environment.
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Optimal rotation of insecticides to prevent the evolution of resistance in a structured 
environment 

by Kohji Yamamura (March 7, 2021; A small misprint was corrected on Nov 19, 2022) 

Supporting Information S1:  
Dose-survival curves in the laboratory and field 

Dose-survival curve in the laboratory 
In this Supporting Information, we derive the logarithmic probit model (Equation (6)) by considering the potential 
mechanisms for inducing mortality. It is reasonable to assume that some types of lethal substances increase within 
an insect body after exposure to insecticide. We assume that the insect dies if the amount of lethal substance is 
larger than a threshold. We denote the amount of such substance by 𝜇. We empirically assume that the expected 
amount of lethal substance Eሺ𝜇ሻ increases linearly with increasing logarithmic dose of insecticide, log௘ሺ𝑦ሻ:  

Eሺ𝜇ሻ ൌ 𝑎W ൅ 𝑏Wlog௘ሺ𝑦ሻ, 
(11)

where 𝑎W and 𝑏W are constants. The actual quantity of 𝜇 will fluctuate stochastically, depending on the condition 
within the insect body. If 𝜇 is given by the sum of many random factors that act independently, then the central 
limit theorem enables us to use a homoscedastic normal distribution, irrespective of the original form of distribution 
of each random variable. Thus, 𝜇 is given by 

𝜇 ൌ 𝑎୛ ൅ 𝑏୛log௘ሺ𝑦ሻ ൅ 𝑒୛,  𝑒୵~𝑁ሺ0,𝜎W
ଶ ሻ,

(12)
ଶ

W
ଶwhere 𝑒୛ is a random variable that follows a normal distribution, 𝑁ሺ0, σWሻ, having a zero mean and a variance 𝜎 .  

Let 𝑡W be the threshold quantity of 𝜇, above which the insect dies. The probability of death at a dose 𝑦, denoted 
by 𝑝୛ሺ𝑦ሻ, corresponds to the probability that satisfies a condition: 𝑒W ൑ ሺ𝑎W ൅ 𝑏Wlog௘ሺyሻ െ 𝑡Wሻ. Hence, 𝑝୛ሺ𝑦ሻ is 
given by 

𝑝୛ሺ𝑦ሻ ൌ Φቆ
𝑎W ൅ 𝑏Wlog௘ሺ𝑦ሻ െ 𝑡W

𝜎W
ቇ , 

(13)
where Φ is the cumulative probability function of the standard normal distribution. We define new parameters, 
𝑎B ൌ ሺ𝑎W െ 𝑡Wሻ 𝜎W⁄  and 𝑏B ൌ 𝑏W 𝜎W⁄  for simplicity. Then, Equation (13) is given by a simpler form:  

𝑝୛ሺ𝑦ሻ ൌ Φ൫𝑎B ൅ 𝑏Blog௘ሺ𝑦ሻ൯. 
(14)

In this case, therefore, we can utilize the following form of probit regression in estimating the parameters, although 
the classical probit regression has no such biological foundations. 

Probitሺ𝑦ሻ ൌ 𝑎B ൅ 𝑏Blog௘ሺ𝑦ሻ. 
(15)

Dose-survival curve in the field 
Various fluctuations will arise in the dose of insecticides in the field. We cannot apply the insecticides uniformly 
over the field. For example, the dose will be higher on the upper side of plant leaves than on the lower side of plant 
leaves. Thus, the dose-survival curve measured in the laboratory is not directly applicable to the field. We must 
estimate the shift that occurs in the mean and variance of the dose in the field. Various factors can act 
multiplicatively in the field. Therefore, the fluctuation of the logarithmic dose of insecticide will follow a normal 
distribution due to the central limit theorem, irrespective of the original probability distribution of each factor. 
Thus, the logarithmic dose log௘ሺ𝑦ሻ in the field can be expressed by 

log௘ሺ𝑦ሻ ൌ log௘ሺ𝑦ሻതതതതതതതതതത ൅ 𝑒୆,  𝑒୆~𝑁ሺ0,σB
ଶሻ, 

(16)
where log௘ሺ𝑦ሻതതതതതതതതതത is the mean quantity of the logarithmic dose, log௘ሺ𝑦ሻ,  and 𝑒୆ is the error that follows a normal 
distribution having a variance σB

ଶ . Substitution of Equation (16) for Equation (12) yields 
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𝜇 ൌ 𝑎W ൅ 𝑏Wlog௘ሺ𝑦ሻ ൅ 𝑏୛𝑒୆ ൅ 𝑒୛,  𝑒୆~𝑁ሺ0,σB
ଶሻ, 𝑒୵~𝑁ሺ0,𝜎W

ଶ ሻ, 
(17)

where the error term 𝑏୛𝑒୆ ൅ 𝑒୛ follows a normal distribution with a variance 𝑏୛
ଶ 𝜎୆

ଶ ൅ 𝜎୛
ଶ . The probability of 

death caused by the insecticide is expressed as follows by using a similar manner as that used for Equations (13) 
and (14): 

𝑝୆൫log௘ሺ𝑦ሻതതതതതതതതതത൯ ൌ Φቆ
𝑎୛ ൅ 𝑏୛ log௘ሺ𝑦ሻതതതതതതതതതത െ 𝑡୛

ඥ𝜎୛
ଶ ൅ 𝑏୛

ଶ 𝜎୆
ଶ

ቇ 

 ൌ Φቆ
𝑎୆ ൅ 𝑏୆ log௘ሺ𝑦ሻതതതതതതതതതത

ඥ1 ൅ 𝑏୆
ଶ𝜎୆

ଶ
ቇ . 

(18)

The comparison between Equation (14) and Equation (18) indicates how the spatial heterogeneity of the 
logarithmic dose influences the mortality of insects if log௘ሺ𝑦ሻതതതതതതതതതത is kept at a constant. Let log௘ሺ𝑦ହ଴ሻ be the 
logarithmic dose that yields a mortality of 0.5 in the laboratory. The dose-survival curve of Equation (18) is given 

by stretching the curve of Equation (14) horizontally by ඥ1 ൅ 𝑏୆
ଶ𝜎୆

ଶ around log௘ሺ𝑦ହ଴ሻ. If log௘ሺ𝑦ሻതതതതതതതതതത is higher
than log௘ሺ𝑦ହ଴ሻ, a smaller number of insects die if the spatial heterogeneity exists. Conversely, if log௘ሺ𝑦ሻതതതതതതതതതത is smaller 
than log௘ሺ𝑦ହ଴ሻ, a larger number of insects die if spatial heterogeneity exists. Consequently, the dose-survival curve 
is smoothed around its convection point. Spatial heterogeneity generally has a smoothing effect, which leads to the 
stability of single-species systems (Yamamura, 1989), the stability of epidemiological systems (Yamamura, 1998) 
and the stability of multi-species communities (Yamamura, 2002a). 

Let 𝑥 be the logarithm of the mean dose that is sprayed in the field. Then, the mean of the logarithmic dose is 
given by log௘ሺ𝑦ሻതതതതതതതതതത ൌ 𝑥 െ 0.5𝜎୆

ଶ owing to the characteristics of the lognormal distribution. The effective quantity of
insecticide will be smaller than the quantity applied in the field, owing to the outflow and degradation. 
Furthermore, the unit used to describe the dose of insecticides is sometimes different between the laboratory and 
field (e.g., Willrich et al. 2003). We consider such changes by assuming the mean of dose changes by a coefficient 
expሺ𝛾ሻ after it is applied in the field. Then, the mean of the logarithmic dose is given by 

log௘ሺ𝑦ሻതതതതതതതതതത ൌ 𝑥 െ 0.5𝜎୆
ଶ െ 𝛾.

(19)
We use the following definition for simplicity of expression: 

 𝑎 ൌ
𝑎୆ െ 𝑏୆ሺ0.5𝜎୆

ଶ ൅ 𝛾ሻ

ඥ1 ൅ 𝑏୆
ଶ𝜎୆

ଶ
, 𝑏 ൌ

𝑏୆
ඥ1 ൅ 𝑏୆

ଶ𝜎୆
ଶ

 . 

(20) 
Then, Equation (18) is expressed by a function of the logarithm of the mean dose sprayed in the field: 

𝑝ሺ𝑥ሻ ൌ Φሺ𝑎 ൅ 𝑏𝑥ሻ. 
(21)

 The survival rate of an insect that experienced the insecticide application of a logarithm of mean dose 𝑥, which is 
denoted by 𝑠ሺ𝑥ሻ, is defined by subtracting 𝑝ሺ𝑥ሻ from 1.0. The cumulative distribution function of a normal 
distribution has point symmetry around the point of probability 0.5, and hence, 𝑠ሺ𝑥ሻ can be expressed by using 
Equation (21) as follows:  

𝑠ሺ𝑥ሻ ൌ 1 െΦሺ𝑎 ൅ 𝑏𝑥ሻ ൌ Φሺെ𝑎 െ 𝑏𝑥ሻ. 
(22)

This is Equation (6), which we used throughout in the example calculation in our study. 

Prediction of the dose-survival curve in the field 
We can transform the dose-survival curve in the laboratory to the dose-survival curve in the field if we know two 
parameters: 𝜎୆

ଶ and 𝛾. Hence, the estimation of 𝜎୆
ଶ and 𝛾 is important for this purpose. We first obtain the estimates 

𝑎ො୆ and 𝑏෠୆ from Equation (14) using the usual probit regression based on the laboratory data. Next, we obtain the 
estimates, 𝑎ො and 𝑏෠, of Equation (21) using the usual probit regression based on the field data. Then, we can estimate 
the parameters, 𝜎୆

ଶ and 𝛾, by calculating 



3 

𝜎ො୆
ଶ ൌ

1

𝑏෠ଶ
െ

1

𝑏෠୆
ଶ , 𝛾ො ൌ

𝑎ො୆
𝑏෠୆

െ
𝑎ො

𝑏෠
െ 0.5𝜎ො୆

ଶ. 

(23)

Willrich et al.(2003) examined the field mortalities of the adult brown stink bug, Euschistus servus (Say), at 
different doses of dicrotophos, an organophosphate insecticide, in the laboratory (on a cotton leaf) and fields (on a 
cotton boll of a living plant). They reported the parameters of probit regression for the laboratory experiment as 
intercept ൌ െ1.817 and slope ൌ 1.58 in an arithmetic scale where the measurement unit was wt/vial. For 
convenience, we transformed the slope of the natural logarithmic scale by using a linear approximation for the 
slope around LD50. Then, we obtained the estimates 𝑎ො୆ ൌ െ0.254 and  𝑏෠୆ ൌ 1.817. Willrich et al. (2003) also 
reported the results of a field experiment using doses of expሺ𝑥ሻ ൌ 0.28, 0.45, and 0.45, where the measurement unit 
was kg ai/ha. They suggested that the number of live insects divided by the total number of observed insects at 
doses of expሺ𝑥ሻ ൌ 0.28, 0.45, and 0.45 were 27/40, 34/40, and 33/44, respectively. The probit regression of 
Equation (21) yields the estimates 𝑎ො ൌ 1.564 and 𝑏෠ ൌ 0.873. Then, Equation (23) yields the following estimates: 
𝜎ො୆
ଶ ൌ 1.011 and 𝛾ො ൌ െ2.438. 

Figure S1 illustrates how the spatial heterogeneity of doses in the field influences the logarithmic basic 
reproduction rate. The comparison between the bold curve (with heterogeneity) and thin curve (without 
heterogeneity) indicates that the spatial heterogeneity increases log௘ሺ𝑅଴ሻ in a higher range of doses where the 
mortality due to insecticides is large. Thus, the spatial heterogeneity of doses accelerates the evolution of resistance 
in this range of doses. 

FIGURE S1 Influence of the spatial heterogeneity of doses in the field on the 
logarithmic basic reproduction rate. The bold curve indicates log௘ሺ𝑅଴ሻ for a 
uniform single application of insecticide (i.e., 𝑛 ൌ 𝑘 ൌ 1), which is identical to the 
bold curves in Figure 3a and Figure 3b. The thin curve indicates log௘ሺ𝑅଴ሻ for an 
imaginal situation where no variability exists in the field (i.e., 𝜎୆

ଶ ൌ 0), keeping the 
applied dose of insecticide at the same quantity. The other parameters are the same 
as those used in Figure 3: 𝑎 ൌ 1.56, 𝑏 ൌ 0.87, 𝛿ଵ ൌ log௘ሺ30ሻ,𝜃 ൌ
0.25, log௘ሺ𝐶ሻ ൌ 0.1. 
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Optimal rotation of insecticides to prevent the evolution of resistance in a structured 
environment  

by Kohji Yamamura (April 26, 2021; A small misprint was corrected on June 26, 2021) 

Supporting Information S2:  
Estimation of the relative abundance of off-farm population (𝜽) 

Estimation from the dispersal curve using the gamma model 
The gamma model was proposed for describing the non-random dispersal of organisms including insects and pollen 
(Yamamura, 2002b; Yamamura, 2004; Yamamura et al., 2007). The dispersal time weighted by the diffusion 
coefficient is described by a gamma distribution in this model. Let 𝜅 and 𝜆 be the shape parameter and scale 
parameter of the gamma distribution, respectively. The mean and variance are given by 𝜅 𝜆⁄  and 𝜅 𝜆ଶ⁄ , respectively. 
Then, the density of individuals at a spatial point of Euclidean dispersal distance 𝑟 in the v-dimensional gamma 
model is given by the following form if we ignore the convection movement: 

𝑔ሺ𝑟|𝜅, 𝜆, 𝑣ሻ ൌ
2ଵି఑

Γሺ𝜅ሻ
൬
𝜆

2𝜋
൰

௩
ଶ
൫𝑟√𝜆൯

఑ି௩ଶ𝐾௩
ଶି఑

൫𝑟√𝜆൯, 

(24)
where Γሺ∙ሻ indicates a gamma function. 𝐾ሺ௩ ଶ⁄ ሻି఑ሺ∙ሻ indicates a modified Bessel function of the second kind of 
order ሺ𝑣 2⁄ ሻ െ 𝜅. The mean dispersal distance and mean squared dispersal distance are given by 

Eሺ𝑟ሻ ൌ
2Γ ቀ

𝑣
2 ൅

1
2ቁ Γ ቀ𝜅 ൅

1
2ቁ

√𝜆Γ ቀ
𝑣
2ቁ Γሺ𝜅ሻ

, 

Eሺ𝑟ଶሻ ൌ
2𝑣𝜅
𝜆

. 

(25)
The v-dimensional random dispersal, in which the stopping occurs at random, corresponds to the special case of 
𝜅 ൌ 1. The gamma model arises in various situations either exactly or approximately. If the step length of random 
walk fluctuates following a generalized gamma distribution, for example, the gamma model arises approximately 
(Yamamura, 2004). 

Let us consider the following situation which may be the most simplified approximation. A long straight line 
separates the on-farm and off-farm fields. Let 𝜔 be the width of the off-farm field belt. The insects in the off-farm 
field disperse at the beginning of cultivation period by following the gamma model given by Equation (24). The 
insects that dispersed into the on-farm side of the straight line create the new on-farm population of the on-farm 
field. We assume that the opposite edge of off-farm field behaves as a reflecting barrier in this dispersal process. 
After completing this dispersal, no interchange occurs between the on-farm and off-farm populations during the 
cultivation period. At the end of cultivation period, all individuals in the on-farm field enter the off-farm field due 
to the removal of crops. After completing this dispersal, the individuals are well mixed within the off-farm field 
during the non-cultivation period. 

If the line separating the on-farm and off-farm fields is sufficiently long, we can use the one-dimensional 
gamma model (𝑣 ൌ 1), that is, the marginal distribution of the two-dimensional distribution, because the movement 
of individuals along the direction of straight line is mutually cancelled (Yamamura, 2004). Then, assuming the 
uniform density of individuals in off-farm field before dispersal, the proportion of individuals that remain in the 
off-farm field, which corresponds to 𝑞, is given by 

𝑞 ൌ 1 െ
1
𝜔
න ቈන 𝑔ሺ𝑟|𝜅, 𝜆, 1ሻd𝑟

ஶ

௬
൅ න 𝑔ሺ𝑟|𝜅, 𝜆, 1ሻd𝑟

ஶ

ଶఠି௬
቉d𝑦.

ఠ

଴
 

(26)
The integral inside the square brackets is given by an analytical form, but the integral from 0 to 𝜔 requires a 
numerical integration. We have the estimates of parameters, 𝜅̂ ൌ 0.303 and 𝜆መ ൌ 2.16 ൈ 10ିହ, for the dispersal 
curve of aphids transmitting Plum pox virus (Yamamura, 2020). If we assume 𝜔 ൌ 50 m, for example, Equation 
(26) yields 𝑞ො ൌ 0.50 for these aphids.
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Estimation from the change in the proportion of resistance during the non-cultivation period 
Let 𝜂 be the abundance of the off-farm population divided by that of the on-farm population at the end of a 
cultivation period. Let 𝜓ଵ,୭୬ and  𝜓ଵ,୭୤୤ be the proportion of resistance in on-farm and off-farm fields, respectively, 
at the end of the cultivation period. Let 𝜓ଶ,୭୬ be the proportion of resistance in the on-farm field at the beginning of 
the next cultivation period. Then, the odds of 𝜓ଶ,୭୬ are given by 
 
𝜓ଶ,୭୬

1 െ 𝜓ଶ,୭୬
ൌ

൫𝜂𝜓ଵ,୭୤୤ ൅ 𝜓ଵ,୭୬൯𝑐ି௚౥౜౜

𝜂൫1 െ 𝜓ଵ,୭୤୤൯ ൅ ൫1 െ 𝜓ଵ,୭୬൯
, 

           (27) 
where 𝑔୭୤୤ is the number of generations in a non-cultivation period. The rearrangement yields the following 
equation for estimating 𝜂. 
 

𝜂̂ ൌ
𝜓෠ଵ,୭୬ െ 𝜓෠ଶ,୭୬ ቀ𝜓෠ଵ,୭୬ ൅ 𝑐௚౥౜౜൫1 െ 𝜓෠ଵ,୭୬൯ቁ

െ𝜓෠ଵ,୭୤୤ ൅ 𝜓෠ଶ,୭୬ ቀ𝜓෠ଵ,୭୤୤ ൅ 𝑐௚౥౜౜൫1 െ 𝜓෠ଵ,୭୤୤൯ቁ
. 

           (28) 
This quantity corresponds to 𝜃/(Average insecticidal survival rate of individual in a cultivation period). Hence, we 
can estimate 𝜃 by 
 

𝜃෠ ൌ
𝜂̂

𝜓෠ଵ,୭୬

൫𝑟ଵሺ𝑥ଵሻ൯
௞
∏ 𝑠௜ሺ𝑥௜ሻ

൅
1 െ 𝜓෠ଵ,୭୬

൫𝑠ଵሺ𝑥ଵሻ൯
௞
∏ 𝑠௜ሺ𝑥௜ሻ

. 

           (29) 
If no additional generation occurs during the non-cultivation period, that is, if 𝑔୭୤୤ ൌ 0, we obtain the following 
inequality from Equation (28).  
 

𝜂̂ ൌ
𝜓෠ଵ,୭୬ െ 𝜓෠ଶ,୭୬

𝜓෠ଶ,୭୬ െ 𝜓෠ଵ,୭୤୤
൒ ቆ

𝜓෠ଵ,୭୬

𝜓෠ଶ,୭୬
ቇ െ 1. 

            (30) 
 
The equality holds for 𝜓෠ଵ,୭୤୤ ൌ 0. Thus, 𝜂̂ ൌ ൫𝜓෠ଵ,୭୬ 𝜓෠ଶ,୭୬ൗ ൯ െ 1 is a conservative estimate of 𝜂 in this case in a 
sense that we do not underestimate the possibility of evolution of resistance if we used this estimate of 𝜂. 
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Optimal rotation of insecticides to prevent the evolution of resistance in a structured 
environment  

by Kohji Yamamura (March 7, 2021) 

Supporting Information S3:  
Basic reproduction rate under an unstructured environment 
In this Supporting Information, we show that the basic reproduction rate increases with increasing concentration of 
insecticide if no off-farm field exists. We first consider logarithmic probit models. Let 𝜙ሺ𝑥ሻ and Φሺ𝑥ሻ be the 
probability density function and cumulative distribution function of the standard normal distribution, respectively. 
We assume 𝑛 ൌ 𝑘 ൌ 1 and log௘ሺ𝐶ሻ ൌ 0 in Equation (3). Let us denote a ൅ 𝑏𝑥 by 𝑧 and 𝑏𝛿 by ∆ for simplicity. 
Then, Equations (3), (6), and (7) yield the following relation: 
 
log௘ሺ𝑅଴ሻ ൌ log௘൫Φሺ∆ െ 𝑧ሻ൯ െ log௘൫Φሺെ𝑧ሻ൯. 
          (31) 

Now, we want to show 
ୢ

ୢ௭
logሺ𝑅଴ሻ ൐ 0 for any positive quantity of ∆, where 

 
d

d𝑧
log௘ሺ𝑅଴ሻ ൌ

d
d𝑧
ቀlog௘൫Φሺ∆ െ 𝑧ሻ൯ቁ െ

d
d𝑧
ቀlog௘൫Φሺെ𝑧ሻ൯ቁ . 

          (32) 
Notice that we have the following general relation for a function 𝑓ሺ𝑥ሻ. 
 
d

d𝑦
𝑓ሺെ𝑦ሻฬ

௬ୀ௫
ൌ െ

d
d𝑦

𝑓ሺ𝑦ሻฬ
௬ୀି௫

. 

          (33) 
The right-hand side of Equation (32) indicates the difference in the first derivatives at a distance ∆. It is expressed 
by the integrated quantity of the second derivatives over ∆. Hence, Equation (32) is expressed by  
 
d

d𝑧
log௘ሺ𝑅଴ሻ ൌ න ቈെ

dଶ

d𝜏ଶ
ቀlog௘൫Φሺ𝜏ሻ൯ቁ቉d𝜏,

∆ି௭

ି௭
 

          (34)  
where we used a general relation of Equation (33). The elemental calculus indicates that the second derivative of a 
logarithm of function 𝑓ሺ𝜏ሻ is generally given by 
 

ቀlog௘൫𝑓ሺ𝜏ሻ൯ቁ
ᇱᇱ
ൌ
െሾ𝑓ᇱሺ𝜏ሻሿଶ ൅ 𝑓ሺ𝜏ሻ𝑓ᇱᇱሺ𝜏ሻ

ሾ𝑓ሺ𝜏ሻሿଶ
. 

           (35) 
 By substituting the derivatives about the standard normal distribution, 𝑓ሺ𝜏ሻ ൌ Φ, 𝑓ᇱሺ𝜏ሻ ൌ 𝜙, and 𝑓ᇱᇱሺ𝜏ሻ ൌ െ𝜏𝜙 in 
Equation (35), we obtain 
 

െ
dଶ

d𝜏ଶ
log௘ሺΦሻ ൌ

𝜙ሺ𝜙 ൅ 𝜏Φሻ

Φଶ . 

           (36) 
The quantity of 𝜙 ൅ 𝜏Φ monotonically increases with increasing 𝜏, since ∂ሺ𝜙 ൅ 𝜏Φሻ ∂𝜏⁄ ൌ Φ ൐ 0. Furthermore, 

we have lim
ఛ→ିஶ

ሺ𝜙 ൅ 𝜏Φሻ ൌ 0. Therefore, 𝜙 ൅ 𝜏Φ is positive. Consequently, we obtain െ
ୢమ

ୢఛమ
ቀlog൫Φሺ𝜏ሻ൯ቁ ൐ 0 from 

Equation (36). Then, Equation (34) indicates that 
ୢ

ୢ௭
logሺ𝑅଴ሻ ൐ 0 for any positive quantity of ∆. 

A similar argument is applicable to general survival curves. The quantity of log௘ሺ𝑅଴ሻ ൅ log௘ሺ𝐶ሻ for 𝜃 ൌ 0 is 
described by the following equation if 𝑛 ൌ 𝑘 ൌ 1: 
 
log௘ሺ𝑅଴ሻ ൌ log௘൫𝑟ଵሺ𝑥ଵሻ൯ െ log௘൫𝑠ଵሺ𝑥ଵሻ൯. 
           (37) 
The logarithmic survival curves, log௘൫𝑟௜ሺ𝑥௜ሻ൯ and log௘൫𝑠௜ሺ𝑥௜ሻ൯, have an upper bound 0 when the survival rate 
approaches 1. The derivatives, dlog௘൫𝑟௜ሺ𝑥௜ሻ൯ d𝑥௜⁄  and dlog௘൫𝑠௜ሺ𝑥௜ሻ൯ d𝑥௜⁄ , are 0 near the upper bound, but the 
derivatives become negative quantities as the dose 𝑥௜ increases. The absolute quantity of the derivative becomes 
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larger as the distance of the survival rate from the upper bound becomes larger, in principle. By definition, we have 
log௘൫𝑟௜ሺ𝑥௜ሻ൯ ൐ log௘൫𝑠௜ሺ𝑥௜ሻ൯. Therefore, we have dlog௘൫𝑟௜ሺ𝑥௜ሻ൯ d𝑥௜⁄ ൐ dlog௘൫𝑠௜ሺ𝑥௜ሻ൯ d𝑥௜⁄ , which yields 
ୢ

ୢ௫
log௘ሺ𝑅଴ሻ ൐ 0. Thus, log௘ሺ𝑅଴ሻ increases monotonically with increasing dose, in principle, for general survival 

curves if no off-farm field exists. 
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Optimal rotation of insecticides to prevent the evolution of resistance in a structured 
environment  

by Kohji Yamamura (March 7, 2021) 

Supporting Information S4:  
Basic reproduction rate under a structured environment 
In this Supporting Information, we show that the basic reproduction rate becomes smaller in either low or high 
doses of insecticides if an off-farm field exists. We first consider logarithmic probit models. We use the same 
notation as in Supporting Information S3. Then, we have the following form in a structured environment: 
 
log௘ሺ𝑅଴ሻ ൌ log௘ሺΦሺ∆ െ 𝑧ሻ ൅ 𝜃ሻ െ log௘ሺΦሺെ𝑧ሻ ൅ 𝜃ሻ.  
          (38) 
Equation (34) changes to  
 
d

d𝑧
log௘ሺ𝑅଴ሻ ൌ න ቈെ

dଶ

d𝜏ଶ
൫log௘ሺΦሺ𝜏ሻ ൅ 𝜃ሻ൯቉d𝜏.

∆ି௭

ି௭
 

          (39) 
The term inside the bracket in Equation (39) is expressed by  
 

െ
dଶ

d𝜏ଶ
log௘ሺΦ ൅ 𝜃ሻ ൌ

𝜙൫𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ൯
ሺΦ ൅ 𝜃ሻଶ

, 

          (40)  
where 𝜙 and Φ are the abbreviations of 𝜙ሺ𝜏ሻ and Φሺ𝜏ሻ, respectively. The quantity of 𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ 
monotonically increases with increasing 𝜏, since ∂൫𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ൯ ∂𝜏⁄ ൌ Φ൅ 𝜃 ൐ 0. Furthermore, we have 
lim
ఛ→ିஶ

൫𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ൯ ൌ െ∞ and lim
ఛ→ାஶ

൫𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ൯ ൌ ൅∞. Consequently, 𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ ൌ 0 has a single 

solution at 𝜏 ൌ 𝜏∗; the quantity of 𝜙 ൅ 𝜏ሺΦ ൅ 𝜃ሻ changes from a negative to a positive quantity at 𝜏 ൌ 𝜏∗ with 

increasing 𝜏. Equation (40) indicates that െ
ୢమ

ୢఛమ
log௘ሺΦ ൅ 𝜃ሻ changes from a negative to a positive quantity at 𝜏∗. 

Then, Equation (39) indicates that  
ୢ

ୢ௭
log௘ሺ𝑅଴ሻ is positive if the lower limit of the integral (െ𝑧) is larger than 𝜏∗, 

while it is negative if the upper limit of the integral (∆ െ 𝑧) is smaller than  𝜏∗. Therefore, the quantity of 
ୢ

ୢ௭
log௘ሺ𝑅଴ሻ is positive for 𝑧 ൏ െ𝜏∗ and negative for 𝑧 ൐ െ𝜏∗ ൅ ∆. That is, the curve of log௘ሺ𝑅଴ሻ plotted against 𝑥 

has its maximum quantity for 𝑥 within 
ሺିఛ∗ି௔ሻ

௕
൏ 𝑥 ൏

ሺିఛ∗ି௔ሻ

௕
൅ 𝛿.  

A similar argument is applicable to general survival curves. The quantity of log௘ሺ𝑅଴ሻ ൅ log௘ሺ𝐶ሻ is described by 
the following equation if 𝑛 ൌ 𝑘 ൌ 1: 
 
log௘ሺ𝑅଴ሻ ൌ log௘ሺ𝑟ଵሺ𝑥ଵሻ ൅ 𝜃ሻ െ log௘ሺ𝑠ଵሺ𝑥ଵሻ ൅ 𝜃ሻ. 
           (41) 
The quantities log௘ሺ𝑟௜ሺ𝑥௜ሻ ൅ 𝜃ሻ and log௘ሺ𝑠௜ሺ𝑥௜ሻ ൅ 𝜃ሻ have a lower bound, log௘ሺ𝜃ሻ, when the survival rate 
approaches 0 in a higher range of 𝑥௜. The derivatives, dlog௘ሺ𝑟௜ሺ𝑥௜ሻ ൅ 𝜃ሻ d𝑥௜⁄  and dlog௘ሺ𝑠௜ሺ𝑥௜ሻ ൅ 𝜃ሻ d𝑥௜⁄ , are 0 
near the lower bound, but the derivatives become negative quantities as the dose 𝑥௜ decreases. The absolute 
quantity of the derivative becomes larger as the distance of the survival rate from the lower bound becomes larger, 
in principle. By definition, we have log௘൫𝑟௜ሺ𝑥௜ሻ൯ ൐ log௘൫𝑠௜ሺ𝑥௜ሻ൯. Therefore, we have dlog௘ሺ𝑟௜ሺ𝑥௜ሻ ൅ 𝜃ሻ d𝑥௜⁄ ൏

dlog௘ሺ𝑠௜ሺ𝑥௜ሻ ൅ 𝜃ሻ d𝑥௜⁄ , which yields 
ୢ

ୢ௫
log௘ሺ𝑅଴ሻ ൏ 0 in a higher range of 𝑥௜. On the other hand, the quantities, 

log௘ሺ𝑟௜ሺ𝑥௜ሻ ൅ 𝜃ሻ and log௘ሺ𝑠௜ሺ𝑥௜ሻ ൅ 𝜃ሻ, have an upper bound log௘ሺ1 ൅ 𝜃ሻ when the survival rate approaches 1 in a 
lower range of 𝑥௜. The derivatives, dlog௘൫𝑟௜ሺ𝑥௜ሻ൯ d𝑥௜⁄  and dlog௘൫𝑠௜ሺ𝑥௜ሻ൯ d𝑥௜⁄ , are 0 near the upper bound, but the 
derivatives become negative quantities as the dose 𝑥௜ increases. The absolute quantity of the derivative becomes 
larger as the distance of the survival rate from the upper bound becomes larger, in principle. By definition, we have 
log௘൫𝑟௜ሺ𝑥௜ሻ൯ ൐ log௘൫𝑠௜ሺ𝑥௜ሻ൯. Therefore, we have dlog௘൫𝑟௜ሺ𝑥௜ሻ൯ d𝑥௜⁄ ൐ dlog௘൫𝑠௜ሺ𝑥௜ሻ൯ d𝑥௜⁄ , which yields 
ୢ

ୢ௫
log௘ሺ𝑅଴ሻ ൐ 0 in a lower range of 𝑥௜. Consequently, log௘ሺ𝑅଴ሻ becomes smaller for either too low or too high a 

dose, in principle, for general survival curves.   
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Optimal rotation of insecticides to prevent the evolution of resistance in a structured 
environment  

by Kohji Yamamura (March 7, 2021) 

Supporting Information S5:  
Characteristics of an aggregated application of a single insecticide 
In this Supporting Information, we show that the basic reproduction rate for the resistance of insecticide decreases 
with increasing repeated use of sprays per cultivation period (𝑛), in the aggregated application of a single type of 
insecticide in which the total number of sprays is kept at a constant. We further show that the basic reproduction 
rate becomes nearly the same irrespective of the number of sprays (𝑛) if the dose is low.  

We consider the case of 𝑛 ൌ 𝑘 and log௘ሺ𝐶ሻ ൌ 0 in Equation (4). Then, Equations (4) yields the following 
relation: 
 

log௘ሺ𝑅଴ሻ ൌ
1
𝑛
൛log௘ሼሾ𝑟ଵሺ𝑥ଵሻሿ௡ ൅ 𝜃ሽ െ log௘ሼሾ𝑠ଵሺ𝑥ଵሻሿ௡ ൅ 𝜃ሽൟ. 

          (42) 
Differentiation about 𝑛 yields 
 
d log௘ሺ𝑅଴ሻ

d𝑛
ൌ 𝜁൫𝑟ଵሺ𝑥ଵሻ൯ െ 𝜁൫𝑠ଵሺ𝑥ଵሻ൯, 

           (43) 
where 
 

𝜁ሺ𝑦ሻ ൌ
𝑦௡ log௘ሺ𝑦ሻ

𝑛ሺ𝑦௡ ൅ 𝜃ሻ
െ

log௘ሺ𝑦௡ ൅ 𝜃ሻ

𝑛ଶ
. 

           (44) 
We have d𝜁ሺ𝑦ሻ d𝑦 ൏ 0⁄  if 𝜃 ൐ 0. Hence, the quantity of Equation (43) is negative, since 𝑟ଵሺ𝑥ଵሻ ൐ 𝑠ଵሺ𝑥ଵሻ. Thus, 
log௘ሺ𝑅଴ሻ decreases with increasing 𝑛. 

If the logarithmic mean dose, 𝑥ଵ, is sufficiently low, then both survival rates, 𝑟ଵሺ𝑥ଵሻ and 𝑠ଵሺ𝑥ଵሻ, are close to 1; 
that is, 1 െ 𝑟ଵሺ𝑥ଵሻ and 1 െ 𝑠ଵሺ𝑥ଵሻ are close to 0. Hence, Equation (42) is approximately expressed by 
 

logሺ𝑅଴ሻ ൎ
1
𝑛
ቄlog௘൛ൣ1 െ 𝑛൫1 െ 𝑟ଵሺ𝑥ଵሻ൯൧ ൅ 𝜃ൟ െ log௘൛ൣ1 െ 𝑛൫1 െ 𝑠ଵሺ𝑥ଵሻ൯൧ ൅ 𝜃ൟቅ 

 

            ൌ
1
𝑛
ቊlog௘ ൜1 െ 𝑛 ൬

1
1 ൅ 𝜃

൰ ൫1 െ 𝑟ଵሺ𝑥ଵሻ൯ൠ െ log௘ ൜1 െ 𝑛 ൬
1

1 ൅ 𝜃
൰ ൫1 െ 𝑠ଵሺ𝑥ଵሻ൯ൠቋ 

            ൎ
1
𝑛
൜െ𝑛 ൬

1
1 ൅ 𝜃

൰ ൫1 െ 𝑟ଵሺ𝑥ଵሻ൯ ൅ 𝑛 ൬
1

1 ൅ 𝜃
൰ ൫1 െ 𝑠ଵሺ𝑥ଵሻ൯ൠ 

 

            ൌ
𝑟ଵሺ𝑥ଵሻ െ 𝑠ଵሺ𝑥ଵሻ

1 ൅ 𝜃
. 

          (45) 
 
Thus, the parameter 𝑛 vanishes, indicating that the basic reproduction rate for different numbers of sprays (𝑛) is 
nearly the same if the dose is low.   
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Optimal rotation of insecticides to prevent the evolution of resistance in a structured 
environment  

by Kohji Yamamura (March 7, 2021) 

Supporting Information S6:  
Evolutional speed of resistance genes 
Haploid organism with asexual reproduction 
We can numerically calculate the speed of the evolution of resistance by using the basic reproduction rate if we 
specify the genetic systems, although we cannot always describe the speed using equations analytically. We 
consider the following special case in this Supporting Information for simplicity: the insects live one generation 
during each period of cultivation without reproducing during the non-cultivation period. We first consider haploid 
insects that reproduce asexually. Let 𝑝௜ be the frequency of the resistant individuals in the 𝑖th generation. We 
assume 0 ൏ 𝑝ଵ ൏ 0.5 as an initial condition. Let 𝐹௜ be the number of offspring of a susceptible individual, and 𝑁௜ 
be the total number of individuals in the 𝑖th generation. Then, the number of resistant individuals at the 𝑡th 
generation is given by 𝑁ଵ𝑝ଵ ∏ ሺ𝑅଴𝐹௜ሻ

௧ିଵ
௜ୀଵ  while the number of susceptible individuals at the 𝑡th generation is given 

by 𝑁ଵሺ1 െ 𝑝ଵሻ∏ 𝐹௜
௧ିଵ
௜ୀଵ . Consequently, the number of resistant individuals at the 𝑡th generation is given by 

 

𝑝௧ ൌ
𝑝ଵ𝑅଴

௧ିଵ

𝑝ଵ𝑅଴
௧ିଵ ൅ 1 െ 𝑝ଵ

. 

          (46) 
Let us assume that the proportion of resistant individuals becomes 0.5 at time 𝑡଴.ହ. We have a relation of 
𝑝ଵ𝑅଴

௧బ.ఱିଵ ൌ 1 െ 𝑝ଵ, and hence, the quantity of 𝑡଴.ହ is given by 
 

𝑡଴.ହ ൌ
logሺ1 െ 𝑝ଵሻ െ logሺ𝑝ଵሻ

logሺ𝑅଴ሻ
൅ 1. 

          (47) 
The number of resistant individuals and the number of susceptible individuals at the ሺ𝑡 ൅ 1ሻth generation are 

given by 𝑁௧𝑝௧𝑅଴𝐹௧ and 𝑁௧ሺ1 െ 𝑝௧ሻ𝐹௧, respectively. Therefore, the curve that indicates the relation between 𝑝௧ାଵ 
and  𝑝௧, which is called the “reproduction curve”, is given by the following difference equation: 
 

𝑝௧ାଵ ൌ
𝑅଴𝑝௧

1 ൅ ሺ𝑅଴ െ 1ሻ𝑝௧
. 

          (48) 
The reproduction curve given by Equation (48) is identical to a discrete expression of the continuous logistic model 
(Beverton and Holt, 1957). Figure S2 shows the reproduction curve for 𝑅଴ ൌ 5. As for haploid insects that 
reproduce asexually, the speed of the evolution of resistance genes per cultivation period coincides with 𝑅଴ during 
an early phase of evolution in which the frequency of resistance genes is small, but the speed decreases as the 
frequency of resistance gene increases, as indicated by the solid curve in Figure S2.  
 
Diploid insects with random mating 
We next consider a diploid insect that reproduces sexually with discrete generations. The number of individuals is 
assumed to be sufficiently large. Random mating is further assumed. If the resistance gene is dominant, then the 
reproduction curve of the number of alleles having the resistance gene is given by 
 

𝑝௧ାଵ ൌ
𝑅଴𝑝௧

1 ൅ ሺ𝑅଴ െ 1ሻ𝑝௧ሺ2 െ 𝑝௧ሻ
. 

          (49) 
On the other hand, if the resistance gene is recessive, the reproduction curve is given by 
 

𝑝௧ାଵ ൌ
𝑝௧ሾ1 ൅ ሺ𝑅଴ െ 1ሻ𝑝௧ሿ

1 ൅ ሺ𝑅଴ െ 1ሻ𝑝௧ଶ
. 

          (50) 
We can easily calculate the time series of the proportion of resistance numerically if we know the basic 
reproduction rate of resistance (𝑅଴).  

If the resistance gene is dominant in diploid insects, then the speed of evolution during the early phase of 
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evolution is nearly the same as that of haploid insects, but the speed becomes very small as the frequency 
approaches 1; the frequency of the resistance gene at time 𝑡 ൅ 1, that is,  𝑝௧ାଵ, is nearly equal to that at time 𝑡 in 
this phase, as illustrated by the dashed curve in Figure S2. Conversely, if the resistance gene is recessive in diploid 
insects, then the speed of evolution during the early phase of evolution is very small, but the speed becomes larger 
as the frequency approaches 1; the speed becomes nearly equal to that of haploid insects, as illustrated by the dotted 
curve in Figure S2. The reproduction curves for the dominant gene and recessive gene intersect at 𝑝௧ ൌ
1 ൫ඥ𝑅଴ ൅ 1൯⁄ . 

The reproduction curves become complicated in the case of incomplete dominance, but the characteristics of the 
reproduction curves will be intermediate between those of the dominant gene (Equation (49)) and recessive gene 
(Equation (50)). Thus, the reproduction curve for the incomplete dominant gene lies between the dashed and dotted 
curves in Figure S2, for example.  
 
 

 
FIGURE S2 Influence of mating systems on the speed of evolution. Reproduction 
curves for 𝑅଴ ൌ 5 are shown. Solid curve indicates the reproduction curve of the 
frequency of resistance genes for asexual reproduction (Equation (48)). Dashed 
curve indicates that for diploid insects where the resistance gene is dominant 
(Equation (49)). Dotted curve indicates that for diploid insects where the resistance 
gene is recessive (Equation (50)). Solid thin line indicates the line for 𝑝௧ାଵ ൌ 𝑝௧.  
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Supporting Information S7:  
Characteristics of a rotational application of insecticides 
In this Supporting Information, we show that the basic reproduction rate for the resistance of type 1 insecticide 
increases with increasing repeated use of type 1 insecticide per cultivation period (𝑘), in the application of multiple 
types of insecticides in which the total number of type 1 insecticide is kept at a constant. We further show that the 
basic reproduction rate becomes nearly the same irrespective of the number of repeated use of sprays (𝑘) if the dose 
is low. 

Let 𝐺 be the geometric mean of 𝑠௜ሺ𝑥௜ሻ for 𝑖 ് 1 in Equation (4), that is, 𝐺௡ି௞ ൌ ∏𝑠௜ሺ𝑥௜ሻ. We consider a case 
of log௘ሺ𝐶ሻ ൌ 0, for simplicity. Then, Equation (4) yields the following relation: 
 

log௘ሺ𝑅଴ሻ ൌ
1
𝑘

log௘ ቂ ൫𝑟ଵሺ𝑥ଵሻ൯
௞
𝐺௡ି௞ ൅ 𝜃ቃ െ

1
𝑘

log௘ ቂ ൫𝑠ଵሺ𝑥ଵሻ൯
௞

 𝐺௡ି௞ ൅ 𝜃ቃ . 

          (51) 
Differentiation about 𝑘 yields: 
 
d log௘ሺ𝑅଴ሻ

d𝑘
ൌ 𝜉൫𝑟ଵሺ𝑥ଵሻ൯ െ 𝜉൫𝑠ଵሺ𝑥ଵሻ൯, 

           (52) 
where 
 

𝜉ሺ𝑦ሻ ൌ
𝑦௞ 𝐺௡ି௞ሺlog௘ሺ𝑦ሻ െ log௘ሺ𝐺ሻሻ

𝑘ሺ𝑦௞ 𝐺௡ି௞ ൅ 𝜃ሻ
െ

log௘ሺ𝑦௞ 𝐺௡ି௞ ൅ 𝜃ሻ

𝑘ଶ
. 

           (53) 
 
We have d𝜉ሺ𝑦ሻ d𝑦 ൐ 0⁄  for the range of 𝑦 ൐ 𝐺 if 𝜃 ൐ 0. Hence, the quantity of Equation (52) is generally positive, 
since 𝑟ଵሺ𝑥ଵሻ ൐ 𝑠ଵሺ𝑥ଵሻ. Thus, log௘ሺ𝑅଴ሻ increases with increasing 𝑘. 

If the logarithmic mean dose is sufficiently low, then 𝐺, 𝑟ଵሺ𝑥ଵሻ 𝐺⁄ , and 𝑠ଵሺ𝑥ଵሻ 𝐺⁄  are close to 1; that is, 1 െ 𝐺, 
1 െ ሺ𝑟ଵሺ𝑥ଵሻ 𝐺⁄ ሻ, and 1 െ ሺ𝑠ଵሺ𝑥ଵሻ 𝐺⁄ ሻ are close to 0. Hence, Equation (51) is approximately expressed by 
 

logሺ𝑅଴ሻ ൎ
1
𝑘
൝log௘ ቊቈ1 െ 𝑘 ቆ1 െ

𝑟ଵሺ𝑥ଵሻ

𝐺
ቇ െ 𝑛ሺ1 െ 𝐺ሻ቉ ൅ 𝜃ቋ െ log௘ ቊቈ1 െ 𝑘 ቆ1 െ

𝑠ଵሺ𝑥ଵሻ

𝐺
ቇ െ 𝑛ሺ1 െ 𝐺ሻ቉ ൅ 𝜃ቋൡ 

 

            ൌ
1
𝑘
ቐlog௘ ൝1 െ ൬

1
1 ൅ 𝜃

൰൭𝑘 ቆ1 െ
𝑟ଵሺ𝑥ଵሻ

𝐺
ቇ ൅ 𝑛ሺ1 െ 𝐺ሻ൱ൡ

െ log௘ ൝1 െ ൬
1

1 ൅ 𝜃
൰൭𝑘 ቆ1 െ

𝑠ଵሺ𝑥ଵሻ

𝐺
ቇ ൅ 𝑛ሺ1 െ 𝐺ሻ൱ൡቑ 

            ൎ
1
𝑘
൝െ൬

1
1 ൅ 𝜃

൰൭𝑘 ቆ1 െ
𝑟ଵሺ𝑥ଵሻ

𝐺
ቇ ൅ 𝑛ሺ1 െ 𝐺ሻ൱ ൅ ൬

1
1 ൅ 𝜃

൰൭𝑘 ቆ1 െ
𝑠ଵሺ𝑥ଵሻ

𝐺
ቇ ൅ 𝑛ሺ1 െ 𝐺ሻ൱ൡ 

 

            ൌ ൬
1

1 ൅ 𝜃
൰ቆ
𝑟ଵሺ𝑥ଵሻ െ 𝑠ଵሺ𝑥ଵሻ

𝐺
ቇ 

 

           ൎ
𝑟ଵሺ𝑥ଵሻ െ 𝑠ଵሺ𝑥ଵሻ

1 ൅ 𝜃
. 

          (54) 
Thus, the parameter 𝑘 vanishes, indicating that the basic reproduction rate for different numbers of repeated use of 
sprays (𝑘) is nearly the same if the dose is low. 
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