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Abstract   

Most models for describing the dispersal of organisms have been developed by using 

diffusion equations with a diffusion coefficient. These equations, however, do not yield 

information that is readily interpretable in biological terms, because the biological 

meaning of the diffusion coefficient is not always clear. Discrete random walk models, 

in which organisms move into adjacent positions by a specific probability, seem to be 

superior in their biological tractability, although they have not been as widely used as 

diffusion equations because of their mathematical intractability. We reconstructed 

discrete random walk models of one-dimension based on two assumptions: (1) moving 

organisms settle by a constant probability and (2) settled individuals are captured by 

traps by a constant probability. We also constructed a model that is applicable for a 

directional movement caused by environmental factors such as wind. We applied the 

model to a one-dimensional dispersal experiment on the ragweed beetle, Ophraella 

communa LeSage, an insect of the size of about 4 mm in adults. Both larvae and adults 

of this species preferably eat ragweed, Ambrosia artemisiifolia L. We planted ragweed 

plants at a place in a linear field of 100 m length and 20 m width. In mid August, adult 

beetles dispersed actively along the linear field to find new food plants after they almost 

defoliated ragweed plants. Assuming a non-directional random walk, we performed the 

linear regression, which indicated that the movement of the adult O. communa in this 

season is approximately described by a discrete random movement in which an 

individual travels next 10 m with a probability of 0.906 during its life. The dispersion 

parameter estimated by the Poisson regression was much larger than 1, indicating that 

there is a considerable amount of fluctuation in the probability of capture or in other 

parameters. It is shown that a similar model is also applicable to a situation in which 

individuals are directly removed by traps from the moving population before settlement.   
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dispersal; Trap efficiency  

 

1. Introduction 

Quantitative evaluation of the dispersal ability of organisms is of critical 

importance in designing and evaluating management strategies for highly mobile 

insects (Turchin and Thoeny, 1993), as well as in predicting the spatial spread of 

invading organisms (Shigesada and Kawasaki, 1997). Most models for describing the 

dispersal of organisms have been developed using diffusion equations that are based on 

continuous random walk models. Various behaviour of movements has been 

incorporated into continuous differential models (Shigesada, 1980; Kareiva and Odell, 

1987; Lewis and Kareiva, 1993; Lewis, 1994; Shigesada, et al., 1995; Kot, et al., 1996; 

Blackwell, 1997; Clark, et al., 1999; Shiyomi and Tsuiki, 1999; Okubo and Levin, 

2001; Yamamura, 2002). In contrast, discrete random walk models are not as widely 

used, mainly because models with continuous variables are generally easier to solve 

analytically (Turchin, 1998). Let us consider the simplest case that M individuals 

disperse at random along a line, starting at position 0. Also suppose that the probability 

of leaving the dispersing population and settling down is a constant, independent of 

time and space. Let n(x, t) and f(x, t) be the density of moving individuals and that of 

settled individuals at a position, x, at a time, t, respectively. Then, we usually use 

differential equations to obtain n(x, t) and f(x, t): 
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where δ is the rate of settlement, and D is the diffusion coefficient that measures the 

dispersal rate that has a dimension of distance2/time. By solving Eqs. (1) and (2), we 
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obtain the density of settled individuals at a position, x, which is denoted by f1(x), by a 

simple form (Okubo, 1980; Müller-Herold and Nickel, 2000): 

 

1( ) exp
2
Mf x x

D D
d d⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

.       (3) 

 

For a two-dimensional model, the density of settled individuals at a distance, r, is given 

by: 
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where K0 is a zero order modified Bessel function of the second kind (Broadbent and 

Kendall, 1953; Williams, 1961; Shigesada, 1980).  

The shape of f1(x) and f2(r), is solely determined by / Dd . However, the 

numerical estimate of / Dd  is not readily interpretable in biological terms, since the 

biological meaning of the diffusion coefficient (D) is not clear (Turchin, 1998). Let us 

consider a discrete random walk in which the spatial step length is λ, and the time step 

is τ. In a limiting argument, one imagines a series of processes in which organisms 

make progressively smaller and more frequent steps: 0λ →  and 0τ → . Then, the 

diffusion coefficient is defined by D = lim λ2/τ, assuming that λ2 goes to zero by the 

same order of magnitude as τ. However, there is no biological foundation about why we 

must take limits in such a strange way, apart from the trivial observation that any other 

way of taking limits will not lead to a diffusion equation (Turchin, 1998). The speed of 

the dispersing organisms is given by λ/τ. By substituting D = λ2/τ, we can describe the 

speed by D/λ. This quantity approaches infinity as λ approaches zero. Thus, we are 

implicitly assuming that the speed of the organisms is infinity in applying Eq. (1), 

although actual organisms have finite speed. In this respect, it may be preferable to use 
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a telegraph equation, in which we assume that organisms move at finite velocities and 

that the direction from one step to the next is correlated (Holmes, 1993). The telegraph 

and diffusion equations yield a similar pattern after an initial transition period. 

However, a telegraph equation is not tractable in deriving an analytical solution of f1(x).  

Parameters in a discrete random dispersal model are biologically more 

interpretable than those in a diffusion equation and a telegraph equation, since a discrete 

model does not rely on a limiting argument; it assumes that an organism moves by a 

fixed step length with a fixed probability. However, some arbitrariness may arise for the 

choice of step length in applying a discrete model. In this article, we show that a 

discrete random dispersal model in one dimension yields a f1(x) that is identical to Eq. 

(3), independent of the choice of step length. Thus, an arbitrary choice of step length 

does not influence the shape of f1(x). Therefore, a discrete random dispersal model 

enables us to obtain a more biologically tractable interpretation from Eq. (3) without 

forcing any artificial distortion. We applied the model to a dispersal experiment on the 

ragweed beetle, Ophraella communa LeSage.  

 

2. Model 

2.1. Non-directional movement 

We considered a linear random walk with a step length of 1. Individuals are 

released at the origin (x = 0). Let us assume that an individual that entered a position 

settles by a constant probability at that position without emigrating from it. We first 

assume that the direction of movement is random; an individual moves to the right and 

left positions by an equal probability. Let d be the probability that an individual settles 

at a position, and s be the probability that an individual moves to the adjacent position 

during its life. If there is no artificial removal of individuals, s is equal to (1 − d). Let M 

be the total number of individuals that are released at the origin. Let Nx be the 
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expectation of the cumulative number of entrances into position x, including multiple 

entrances by the same individual. Individuals that entered a position (x + 1) enter the 

position x by a probability of (s/2) if x ≥ 0. Individuals that entered a position (x – 1) 

enter the position x by a probability of (s/2) if x ≥ 1. Thus, we have the difference 

equation: 

 

1 12 2x x x
s sN N N− += + . (x = 1, 2, 3, 4, ...)     (5) 

 

The same equation holds for the negative range of x (x = –1, –2, –3, ...).  However, we 

have another relation around the origin of release (x = 0): 

 

0 1 12 2
s sN N M N−= + + ,        (6) 

 

since M individuals directly enter at this position. The general solution of a 

homogeneous difference equation such as Eq. (5) is given by 

 

1 1 2 2
x x
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where C1 and C2 are constants.  β1 and β2 are the roots of the characteristic equation 

that is given by replacing Nx-1, Nx, and Nx+1 in the difference equation by 1, β, and β2, 

respectively (Goldberg, 1958, p 136).  In our case, the characteristic equation is given 

by 
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which yields the roots: 
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where β1 < 1 and β2 > 1. Conversely, we obtain 
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Nx must converge to zero for x → ∞ and x → –∞. Therefore, the appropriate solution 

has a form 

 

1
x

xN =ab ,   (x ≥ 0)       (12) 

2
x
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where α is a constant.  By substituting Eqs. (9) and (10) for Eq. (6) by using Eqs. (12) 

and (13), we obtain 

 

21

M

s
=

−
a .          (14) 

 

Eqs. (12) and (13) can be expressed by 

 

1
x

xN =ab .          (15) 

 

Then, expectation of the cumulative number of individuals that settled at a position x, 

which is denoted by Zx, is given by 
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1
x

xZ d= ab .          (16) 

 

If we capture settled individuals (but not moving individuals) by a constant probability 

c, the expected number of individuals captured at the position x, which is denoted by Tx, 

is given by  

 

1
x

xT cd= ab .          (17) 

 

Let tx be the observed number of individuals captured at the position x. Eq. (17) 

becomes a linear form about x  in a logarithmic scale. Hence, we can estimate the 

parameters by the linear regression assuming a model:  

 

1 1ln( ) ln( ) ln( )= + +x xt cd x ea b ,       (18) 

 

where ex1 is an error that follows a normal distribution with constant variance. We 

obtain the estimates, 1̂β  and cdα , from the slope and intercept of the regression, 

respectively. Then, we obtain the estimate of s by substituting the estimate 1̂β  for Eq. 

(11). If we have an estimate of M, we can estimate α by using Eq. (14). The probability 

of settlement, d, is estimated by ˆ(1 )s− . 

We have some trouble performing the linear regression in a logarithmic scale 

when some data are equal to zero, since we cannot calculate the logarithm of zero. In 

such a case, we can use a nonlinear least squares method by assuming a model: 

 

1 2
x

x xt cd e= +ab ,         (19) 

 

where ex2 is an error that follows a normal distribution with constant variance. 
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However, the variance of ex2 usually decreases as the expected number of captures 

decreases, which contradicts the standard assumption in the least squares method. If the 

proportion of captured individuals is small, we can assume that tx follows the Poisson 

distribution with a mean of Tx. In this case, we can use the maximum likelihood 

estimation based on the Poisson distribution. Fortunately, Eq. (19) becomes a linear 

form by using a logarithmic transformation as discussed before. Hence, we can use a 

generalized linear model for the estimation of parameters, where error distribution is the 

Poisson distribution and link function is the logarithmic link (McCullagh and Nelder, 

1989). The probability of capture, c, will fluctuate in an actual field, and hence the 

expected number of captures, Tx, may fluctuate around the number predicted from the 

model. Then, it will be preferable to assume an overdispersed Poisson distribution in 

estimating the parameters.  

 

2.2. Directional movement 

If the wind is blowing in a specific direction, an advection movement occurs for 

the dispersal of insects; the probability of their moving to the right is then different from 

that for their moving to the left.  Thus, some modifications are required for the above 

equations. Let p be the conditional probability that an individual moves to the right, 

given that it moves to an adjacent position. Then, Eqs. (5) and (6) are modified to 

 

1 1(1 )x x xN psN p sN− += + −  (x = …, − 3, − 2, -1, 1, 2, 3, 4, ...)   (20) 

0 1 0 1(1 )N psN M p sN−= + + −        (21) 

 

By using a similar argument as that used above, we obtain Eqs. (12) and (13) with  
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By substituting Eqs. (22) and (23) for Eq. (21) by using Eqs. (12) and (13), we obtain 

 

21 4 (1 )

M

p p s
=

− −
a          (24) 

 

Then, if we capture settled individuals after the dispersal period by a constant 

probability c, the expected number of captured individuals at the position x is given by 

 

1
x

xT cd= ab    (x ≥ 0)       (25) 

2
x

xT cd= ab    (x ≤ 0)       (26) 

 

By solving Eqs. (22) and (23), we obtain 
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We can obtain the estimates, cdα , 1̂β , and 2β̂  by using Eqs. (25) and (26). Then, we 

can estimate s and p by using Eqs. (27) and (28). If we have an estimate of M, we can 

obtain the estimate â  by using Eq. (24).  

 

3. Example 

We applied the above model to a dispersal experiment on the ragweed beetle, 
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Ophraella communa LeSage, an insect of the size of about 4 mm in adults. Both larvae 

and adults of this species preferably eat ragweed, Ambrosia artemisiifolia L. The 

ragweed beetle was unintentionally introduced into Japan recently; it was first found in 

1996 in Chiba prefecture (Takizawa, et al., 1999), and the range of distribution is 

currently expanding year by year (Moriya and Shiyake, 2001). We used a linear field to 

evaluate the dispersal ability in one dimension (Fig. 1). Ragweed seeds were drilled 

with 1m spacing in a plot (10 20× m) in early spring in 1999. Wild overwintering adults 

immigrated into the ragweed field from late April to May, and reproduced in an 

exponential manner. The ragweed plants were almost defoliated in mid-August when 

the third and fourth generation adults emerged. Then, adult beetles dispersed actively 

along the linear field to find new food plants. We placed ragweed plants (about 30 cm 

in height) as trap plants at 10 m intervals from the edge of the ragweed field along two 

lines (Fig. 1) at 17 o'clock on 19 August, 1999. Afterwards, adult beetles around the 

trap plants walked onto the plants to eat them. One hour later, we brought these plants 

to the laboratory and counted the number of beetles on the plants. We assumed that the 

trees along the field formed a reflecting barrier for the dispersal. Although the south end 

of the field will also be a reflecting barrier, we used Eq. (17) as an approximation. We 

cannot evaluate the directionality in movement in our experimental field since we 

placed traps only in one-direction. If we place traps in both direction in a linear field, 

we will be able to evaluate the directionality in movement by using Eqs. (25) and (26). 

Observed ln(tx) decreased approximately linearly with increasing distance from 

the ragweed field within 100 m (Fig. 2). The linear regression based on Eq. (18) yielded 

a relation:  

 

ln(Tx) = 8.182 − 0.451 x.  (r2 = 0.910)     (29) 

 

where x is distance measured by 10 m unit. The standard errors were 0.311 and 0.050 
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for the intercept and slope, respectively. Then, we obtain 1̂b  = exp(− 0.451) = 0.637. 

By substituting 1̂b  = 0.637 for Eq. (11), we obtain ˆ 0.906s = . It indicates that the 

movements of adult O. communa are described by a random movement in which an 

individual travels a distance of next 10 m by a probability of 0.906 during its life. The 

estimates (± asymptotic SE) based on the nonlinear regression using Eq. (19) were 

3686 884α = ±cd  and 1̂ 0.675 0.073b = ± .  In this case, we obtain an estimate, 

ˆ 0.927s = . We used the Marquardt method in the procedure NLIN of SAS for this 

calculation (SAS Institute, 1989). The maximum likelihood estimates based on the 

Poisson distribution were  

 

ln(Tx) = 8.378 − 0.473 x.        (30) 

 

The asymptotic standard errors adjusted by the dispersion parameter were 0.240 and 

0.076 for the intercept and slope, respectively. In this case, we obtain an estimate, 

ˆ 0.898s = . The dispersion parameter was 11.93, which was much larger than 1, 

indicating that there is a considerable amount of fluctuation in the probability of capture 

or in other parameters. We used the procedure GENMOD of SAS for this calculation 

(SAS Institute, 1997).  

 

4. Discussion 

The distribution of settled individuals that was derived from a discrete random 

dispersal model (Eq. 16) has the same form as that derived from a diffusion equation 

(Eq. 3). However, Eq. (16) enables an interpretation that is biologically more tractable 

than Eq. (3). The parameter 1β  in Eq. (16) is interpreted as the probability of movement 

by using Eq. (11), whereas the parameter / Dd  in Eq. (3) is not readily interpretable. 

Although we used 10 m as the step length in the above example for simplicity, it will be 
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preferable to adopt a step length based on biological observations. For example, in the 

case of the flight movement of the female small white butterfly, Pieris rapae crucivora, 

1.3 m will be a reasonable step length when we describe the movement in densely 

planted cabbage fields (Yamamura, 1999).  

In several mark-release experiments, we sometimes used traps that continuously 

removed the dispersing organisms during the dispersal period (e.g., Wakamura, et al., 

1992; Miyatake, et al., 2000). The probability of movement (s) becomes smaller near a 

trap, since individuals captured by traps cannot move to adjacent positions. If traps are 

placed uniformly in a lattice pattern, the probability of movement will uniformly 

decrease, keeping s independent of time and space. Hence, Eqs. (12) and (13) hold in 

this situation. Then, the expected number of individuals captured at a position x is given 

by 

 

1
x

xT g= ab ,          (31) 

 

where g is a probability that an individual entered at a position is captured by traps. We 

can estimate s and g by a similar manner as described before. Let us assume that 

organisms that escape trapping move to adjacent positions by a constant probability (1 

− d). Then, we have a relation: s = (1 − g)(1 − d). Hence, we can estimate d by 

ˆ ˆ ˆ(1 ) /(1 )g s g− − − . By substituting the estimate of d for Eq. (16), we obtain the 

distribution of Zx. Thus, we can predict the natural distribution of settled individuals 

from an artificial distribution of trap catches that is obtained from a release experiment.  
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Figure legends 

 

Fig. 1.  Experimental field for evaluating the dispersal distance of adult Ophraella 

communa. Circles indicate the position of trap plants (ragweed) that were placed at 10 

m intervals from the edge of the ragweed field.  

 

Fig. 2.  Number of individuals captured by the trap plants, showing the spatial 

distribution of the density of settled individuals. Circles show the sum of captures on 

two trap plants placed at the same distance. Linear regression based on Eq. (18) is 

shown.  
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