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Abstract Although in mark-recapture experiments traps
are useful to estimate the dispersal distance of organ-
isms, they cause a dilemma that may be called a kind of
Heisenberg effect: a large number of traps should be
placed to yield a precise estimate of mean dispersal
distance, while these traps shorten the mean dispersal
distance itself by intercepting organisms that should
have dispersed for further distances. We propose a
procedure to solve this dilemma by placing traps uni-
formly in a lattice pattern, and by assuming a random
movement and a constant rate of settlement for organ-
isms. We applied this procedure to estimate the dispersal
distance of the sugarcane wireworm Melanotus okinaw-
ensis Ohira (Coleoptera: Elateridae). The estimated
mean dispersal distance was 143.8 m. Through the use
of a conventional method of estimation, the mean dis-
persal distance was estimated to be 118.1 m. Thus, it was
shown that the conventional estimate of dispersal dis-
tance was 18% smaller than the corrected estimate in
our experiment.
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Introduction

Traps are frequently used in mark-recapture experi-
ments for estimating the mean dispersal distance or
estimating the dispersal function which is the relation

between distance and the density of dispersed individu-
als. Marked individuals are released from a point source
and are recaptured continuously by traps that are placed
at various distances from the release point. In these
experiments, we are confronted with a dilemma that may
be called a Heisenberg effect (Turchin 1998). If we want
to reduce the sampling error in the estimates of dispersal
distance, we should recapture most of the marked indi-
viduals by placing as many traps as possible over the
field. However, these traps cause additional mortality
during the dispersal of individuals. Individuals captured
by traps would have dispersed over longer distances had
they not been captured. Thus, the estimate of mean
dispersal distance obtained by a mark-recapture exper-
iment becomes inevitably smaller than the actual dis-
persal distance. To reduce such biases, we should
recapture a small fraction of the population by using a
small number of traps or less efficient traps. However,
the estimate obtained by such an experimental design is
subject to large sampling errors and hence less reliable.
Such a dilemma will become a serious problem if we
want to obtain a precise estimate of dispersal distance.

In this article, we show that, under several assump-
tions, we can estimate natural dispersal distance if we
place traps uniformly in a lattice pattern. We apply this
method to the estimation of the dispersal distance of the
sugar cane wireworm, Melanotus okinawensis Ohira
(Coleoptera: Elateridae), conducted in Ikei Island in
Okinawa prefecture (Kishita et al. 2003), where funnel-
vane traps containing synthetic sex pheromone were
placed uniformly in the field in order to recapture male
adults.

Model

Dispersal distance without artificial removal

We first derive the natural distribution of dispersal
distance in which there is no artificial removal. Let us
assume that the movement of individuals follows a
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Brownian random motion, the rate of which is invariant
in time and space. We assume no convection flow. We
assume that the behavior of individuals is mutually
independent. The number of individuals at time t at
coordinate (x,y), which is denoted by n(x,y,t), is then
described by a partial differential equation (Okubo 1980;
Shigesada and Kawasaki 1997):

@n x; y; tð Þ
@t

¼ D
@2n
@x2
þ @

2n
@y2

� �
; ð1Þ

where D is the diffusion coefficient measuring the dis-
persal rate with units (distance2/time). When n0 indi-
viduals are released at time 0 from the origin (0, 0), the
solution is given by

n x; y; tð Þ ¼ n0
4pDt

exp �
x2 þ y2
� �

4Dt

� �
; ð2Þ

which is a bivariate normal distribution with mean zero,
correlation coefficient zero, and variance 2Dt in each
variate. Let us denote the distance from the origin by
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: Equation 2 can then be rewritten in a

simpler form:

n r; tð Þ ¼ n0

4pDt
exp � r2

4Dt

� �
: r>0ð Þ ð3Þ

We are using a transformation: x = rcosh, y = rsinh.
Therefore, we have a relation: n(x,y,t)dxdy= n(r,t)rdhdr,
where the Jacobian of transformation (r) is included. Let
us assume that the traveling individuals settle at a posi-
tion by a rate k, which is independent of time, space, and
the density of individuals. The probability distribution of
the traveling duration, which is denoted by p(t), is then
given by an exponential distribution:

p tð Þ ¼ k exp �ktð Þ: ð4Þ

The expected number of settled individuals at a distance
r, which is denoted by f(r), is given by the following
equation, since we are assuming that the behavior is
independent of the density of individuals (Broadbent
and Kendall 1953; Williams 1961; Shigesada 1980):

f rð Þ ¼
Z 1
0

n r; tð Þp tð Þdt ¼ n0
2p

kDK0 r
ffiffiffiffiffiffi
kD

p� 	
; ð5Þ

where K0(Æ) is a modified Bessel function of the second
kind of order zero, and kD is defined by k/D. We refer to
kD as ‘‘rate of settlement scaled by diffusion coefficient’’.

In the literature, most dispersal experiments using
traps are based on the implicit assumption that the
influence of artificial removal by traps is negligibly small
and that the distribution of captured individuals is
proportional to the distribution of naturally settled
individuals. Then, the expected number of individuals
captured by the ith trap placed at a distance ri is given by

g rið Þ � cf rið Þ ¼
cn0

2p
kDK0 r

ffiffiffiffiffiffi
kD

p� 	
; ð6Þ

where c is a constant.

Dispersal distance with artificial removal

Let us consider a situation where traps are placed for a
sufficiently long time until all individuals settle. If traps
are placed uniformly in a lattice pattern, the instanta-
neous mortality caused by traps is nearly constant, and
hence we can assume that moving individuals are re-
moved by traps at an approximate constant rate d. The
probability distribution of the traveling duration is given
by an exponential distribution:

q tð Þ � kþ dð Þ exp � kþ dð Þt½ �: ð7Þ

Let w be the density of traps per m2. A trap then gathers
organisms that are captured within 1/w m2 on average.
Individuals that stop their movement enter some traps
by a rate d/(d+k). Therefore, the expected number of
individuals captured by the ith trap placed at a distance
ri is approximately given by

g rið Þ �
d

w kþ dð Þ

Z 1
0

n ri; tð Þq tð Þdt

¼ n0

2pw
dDK0 ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD þ dD

p� 	
; ð8Þ

where dD is the ‘‘artificial mortality scaled by diffusion
coefficient’’ defined by dD = d/D. Equation 6 corre-
sponds to a special case of Eq. 8 where dD fi 0, w fi 0
keeping ckD = dD/w. Let m be the total number of
individuals captured by traps. The expected proportion
of recaptured individuals is then given by

E
m
n0

� �
� dD

kD þ dD
; ð9Þ

where E indicates the expectation.

Estimation of parameters

We can estimate kD and dD by using Eq. 8. We can then
estimate the natural dispersal distance, f(r), by substi-
tuting the estimate of kD for Eq. 5. Let s be the number
of traps that are used to recapture released individuals.
Let ri be the distance between the release point and the
ith trap, yi be the observed number of individuals
recaptured by the ith trap. The released individuals fall
into one of the (s +1) categories, which consist of
individuals captured by the ith trap (i =1, 2, ... s) and
individuals not captured by any trap. If each trap has a
fixed probability of recapture, and if the behavior of
individuals is mutually independent, the distribution of
captured individuals follows a multinomial distribution
consisting of (s +1) categories. A multinomial distri-
bution is given by a conditional distribution of a mul-
tiplicative Poisson distribution (Fisher 1922). If the
proportion of recaptured individuals is small, it there-
fore becomes approximately identical to the multiplica-
tive Poisson distribution. Hence, we obtain the
maximum-likelihood estimates of parameters, which are
denoted by k̂kD and d̂dD by numerically maximizing the log
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likelihood (l) of the multiplicative Poisson distribution in
such a case:

l ¼
Xs

i¼1
yi log g rið Þ½ � � g rið Þ � log yi!½ �f g: ð10Þ

We can use the Solver of Microsoft EXCEL to iteratively
find the parameters that maximize the log likelihood. If
the values of parameters kD and dD are expected to be very
small, scaling of parameters, such as multiplying by 105 in
our case, is preferable to enhance the convergence prop-
erty of iterative calculation. The Bessel function of order
zero is calculated by using BESSELK worksheet func-
tion. Logarithmic factorial, log[yi!], is calculated by using
the logarithmic gamma function of the form GAM-
MALN(yi+1). Least squares estimates of parameters are
useful as initial values for iteration. We can estimate the
asymptotic variance-covariance matrix of estimates
(which is denoted byV) by using theHessianmatrix of the
log likelihood function evaluated at k̂kD and d̂dD
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where var(Æ) and cov(Æ) indicate the variance and
covariance, respectively. Standard errors of estimates
are given by the square roots of the diagonal elements of
the variance-covariance matrix. We can estimate the
variance-covariance matrix by employing numerical
differentiations using Microsoft EXCEL.

Bias in the estimation of mean dispersal distance

From Eq. 5, we derive the mean dispersal distance:

E rð Þ ¼ 1

n0

Z 1
0

Z 2p

0

r � f rð Þ � rdhdr

¼ 1

n0

Z 1
0

r � 2prf rð Þdr ¼ p

2
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kD
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Let Ê(r) be the estimate of mean dispersal distance ob-
tained by substituting k̂kD for kD in Eq. 12. Let k̂k

0
D be the

apparent estimate of kD obtained by fitting Eq. 6 to
data, and Ê’(r) be the apparent estimate of E(r) obtained
by substituting k̂k

0
D for kD in Eq. 12. Then, we have the

following relation, since we have k̂k
0
D ¼ k̂kD þ d̂dD:

ÊE
0

rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂kD

k̂kD þ d̂dD

s
ÊE rð Þ: ð13Þ

Thus, Ê’(r)becomes much smaller than Ê(r) if the mor-
tality caused by traps (dD) is large. We obtain an
approximation of Eq. 13 by using Eq. 9.

ÊE
0

rð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

n0

r
ÊE rð Þ ð14Þ

This equation will be useful in estimating the degree of
underestimation, since we can readily obtain the
quantity of m/n0 from field data without estimating kD
and dD.

Materials and methods

The sugar cane wireworm, M. okinawensis Ohira (Coleoptera:
Elateridae), is a serious pest of sugar cane in the Ryukyu Islands
(Ohira 1988). Adults emerge on the ground between March and
May on Okinawa Island (Nagamine and Kinjo 1990). The larvae
injure underground buds, causing germination failure, death of
hearts, and ratooning failure (Hokyo 1980; Nagamine and Kinjo
1981). A large amount of insecticide is applied before planting or
during the growth period of the sugar cane in order to control the
larvae (Yasuda and Hokyo 1983).

Experiments were conducted on Ikei Island, Yonashiro-cho,
Okinawa Prefecture, Japan in 2000. Ikei Island (about 158 ha in its
total area) is one of the three stepping-stone islands at the east of
Kin Bay, about 12 km distant from Okinawa Island (Fig. 1;
26�23¢N, 128�00¢E). The cultivated area of this island is 81.4 ha.
Sugar cane (21.6 ha) and tobacco (28.6 ha) are the main crops. The
total experimental area including farm roads and periphery fields is
95.3 ha.

Pheromone traps were used for gathering the males to be re-
leased and also for recapturing the released males. We used poly-
ethylene tubes (60 cm long, 2 mm i.d.) containing 1 ml n-dodecyl
acetate [>95.0% (GC); Tokyo Chemical Industry, Tokyo] as
pheromone lures. Two pheromone lures were attached to each
funnel-vane trap (15 cm in diameter, 38.5 cm height with crossed
vanes; Trece, Salinas, Calif.). We placed each trap on the ground by
wiring it to a rod (0.8 cm in diameter, 90 cm length) that was
pushed into the soil to a depth of about 10 cm.

Insects to be released were collected in traps in the field at
Itoman and Haebaru, in the southern part of Okinawa. They
were kept in plastic boxes and provided with a wad of tissue
paper that was soaked with a diluted ‘‘sports drink’’ solution
(Otsuka Pharmaceutical Company, Tokyo) as their food. Pieces
of sugar cane leaves were supplied as their shelter. One day be-
fore the experiments, the pronotum and elytra of beetles were
marked with an oily dye using felt-tip pens (Mitsubishi Paint).
Three hundred and 500 marked insects were released at the
center of the island (Fig. 2), on March 30 (Experiment 1) and
April 25 (Experiment 2), respectively.

We placed traps uniformly over the experimental area in order
to apply the described method. Traps were placed at 725 sites
throughout the experimental area approximately in a lattice pat-
tern. Among these traps, 250 set along roads were used for the
estimation of dispersal distance (Fig. 2). Trap catches were exam-
ined on 1 and 3 April in Experiment 1, and on 27 and 29 April in
Experiment 2.

Results

We estimated the averaged dispersal curve by combining
the results of Experiments 1 and 2, since the number of
recaptured individuals was not sufficiently large to yield
precise estimates for each experiment. We used the
cumulative number of insects recaptured 2 and 4 days
after release in order to predict the cumulative dispersal
distance (Fig. 3). The total number of recaptured indi-
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viduals in the 250 traps was 79. The maximum likeli-
hood estimates (± asymptotic standard errors) of
parameters of Eq. 8 were k̂kD ¼ 11:93� 10�5 � 2:30�
10�5 and d̂dD ¼ 5:77� 10�5 � 1:20� 10�5: The log like-
lihood given by Eq. 10 was )89.63. The estimate of
mean dispersal distance calculated by Eq. 12 was
143.8 m.

If we adopt the conventional method of estimation
by using Eq. 6, we obtain an estimate: k̂0k0D ¼
11:93þ 5:77ð Þ � 10�5 ¼ 17:70� 10�5: The dispersal
curve calculated by using this estimate overestimates the
density of settled individuals near the release origin
(upper panel of Fig. 4), while it underestimates the
density at farther distances (lower panel of Fig. 4). By
substituting k̂kD and d̂dD for Eq. 13, we obtain the degree
of underestimation: Ê’(r) =0.821Ê(r). Thus, if we use
the conventional method, we underestimate the mean
dispersal distance by about 18%. Another estimate of

the degree of underestimation is given by Eq. 14. We
examined 250 of 725 traps placed in the field and
recaptured 79 individuals. Hence, we can estimate the
total number of recaptured individuals as 79·725/
250=229. The estimate of the proportion of recaptured
individuals is then 229/800=0.286. By substituting this
observed quantity for m/n0 in Eq. 14, we obtain an
estimate of the degree of underestimation: Ê’(r)
[0.845Ê(r).

Discussion

We showed that the dilemma caused by traps in mark-
recapture experiments is avoidable if we place traps
uniformly in a lattice pattern, and if we assume a ran-
dom movement and a constant rate of settlement for
organisms. We can obtain the maximum likelihood
estimate of the natural dispersal distance by estimating
the parameters of Eq. 8 by using the maximum likeli-

Fig. 1 Location and map of
Ikei Island

Fig. 2 Arrangement of 250 traps (solid circles) for evaluating the
dispersal distance of male beetles and 475 traps (open circles) for
mass trapping. Arrow indicates the release point of marked
individuals

Fig. 3 The number of recaptured individuals in traps placed at
different distances. The curve indicates the distribution that was
estimated by using Eq. 8. The number of recaptured individuals is
not shown for traps that were placed farther than 400 m from the
release site
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hood method, and by substituting the parameters for
Eq. 12. Microsoft EXCEL is available for this estima-
tion. Equation 14 indicates that the conventional esti-
mate of mean dispersal distance is much smaller than the
corrected estimate if the proportion of removal is large.
In our experiment for examining the dispersal distance
of the sugarcane wireworm M. okinawensis, the con-
ventional estimate of mean dispersal distance was 18%
smaller than the corrected estimate.

The uniform placement of traps, which is required for
the estimation of dispersal distance, will not be easily
attainable. Some kind of approximation is necessary,
since it is logically impossible to place traps uniformly
over infinite space of two dimensions. We placed traps
uniformly over an island which is a closed space isolated
from other habitats. In this case, both the range of insect
dispersal and the range of trap placement are limited
within the island, although both ranges are assumed to
be infinite in the model. This approximation will be
satisfactory if the size of the island is sufficiently large
with respect to the dispersal ability of insects. Several
experiments have adopted a lattice placement of traps
over a specific range (Plant and Cunningham 1991;
Schneider 1999; Mo et al. 2003). The labor required for
recapturing, however, increases in an accelerating man-
ner with increasing distance, because the number of

traps is in proportion to the square of the distance.
Radial trap placements are frequently adopted as an
alternative experimental design; that is, the same num-
ber of traps (or approximately the same number of
traps) are placed at each distance over a specific range
(Turchin and Thoeny 1993; Cronin et al. 2000; Sato et al.
2000; Smith et al. 2001). Other experiments have adop-
ted more complicated patterns (Hawkes 1972; Wakam-
ura et al. 1990; Hunt et al. 2001; Showers et al. 2001;
Skovgård 2002). If traps are not placed uniformly,
however, it will be difficult to solve the dilemma, since
the instantaneous proportion of individuals that departs
from a dispersing population is not constant even if the
rate of natural settlement is constant. If we can assume a
random dispersal and a constant rate of natural settle-
ment of organisms, we should place traps in a lattice
pattern at least around the release point. Such a place-
ment enables us to eliminate the bias caused by artificial
removal.

We can more easily perform the uniform placement
of traps if we can release organisms in a one-dimensional
space that is sandwiched between two linear reflecting
barriers; the number of traps in a one-dimensional space
increases in proportion to the maximum trap distance,
while in a two-dimensional space it increases in pro-
portion to the square of the maximum distance. We can
derive the equation for one dimension by using a method
similar to that described earlier. Let n(x,t) be the number
of individuals at time t at a distance x. Then, we have a
one-dimensional version of Eq. 3:

n x; tð Þ ¼ n0
2
ffiffiffiffiffiffiffiffi
pDt
p exp � x2

4Dt

� �
: ð15Þ

The number of settled individuals at a distance x, which
is denoted by f1(x), is given by the following equation
(Williams 1961; Turchin 1998):

f1 xð Þ ¼
Z 1
0

n x; tð Þp tð Þdt ¼ n0
2

ffiffiffiffiffiffi
kD

p
exp � xj j

ffiffiffiffiffiffi
kD

p� 	
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The mean dispersal distance is given by 1=
ffiffiffiffiffiffi
kD
p

: The
expected number of individuals captured by the ith trap
placed at a distance xi is given approximately by

g1 xið Þ �
d

w1 kþ dð Þ

Z 1
0

n x; tð Þq tð Þdt

¼ n0dD

2w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD þ dD
p exp � xj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD þ dD

p� 	
; ð17Þ

where w1 is the density of traps per m. Yamamura et al.
(2003) suggested a discrete version of these equations for
one dimension. We can estimate the parameters of this
equation by a manner similar to that for Eq. 8. Let E(x)
be the estimate of mean dispersal distance and E’(x) be
the apparent estimate. We then have a relation:

ÊE
0

xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂kD

k̂kD þ d̂dD

s
ÊE xð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

n0

r
ÊE xð Þ: ð18Þ

Fig. 4 Influence of artificial removal by traps on the estimate of
dispersal distance. Solid curves indicate the dispersal curves, f(r),
obtained by considering artificial removal by traps�
k̂kD ¼ 11:93� 10�5 in Eq: 5

�
: Broken curves indicate the estimates

obtained by assuming no removal
�
k̂k
0
D ¼ 17:70� 10�5 in Eq: 5

�
:

Upper panel indicates the comparison of curves at shorter distances.
Lower panel indicates the comparison at longer distances
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Empirical equations are sometimes superior to theo-
retical equations in describing the dispersal function,
although theoretical equations are necessary if we want
to obtain unbiased estimates of the mean dispersal dis-
tance. Taylor (1978) compared the descriptive ability of
empirical equations having two parameters, and showed
that the empirical model proposed by Wallace (1966) is
most preferable; that is,

ln g rið Þ½ � ¼ a� b
ffiffiffiffi
ri
p

; ð19Þ

where a and b are constants. Plant and Cunningham
(1991), in analyzing the dispersal of sterile Mediter-
ranean fruit flies, Ceratitis capitata, also concluded
that the Wallace model is the most preferable. Kishita
et al. (2003) compared the fitness of several empirical
equations for the dispersal of M. okinawensis by using
An Information Criterion (AIC, proposed by Akaike
1973, which is frequently referred as the Akaike
Information Criterion). They also concluded that the
Wallace model is most preferable; the AIC for the
Wallace model was 182.7, the smallest among those of
models examined. In the present study we used the
same data as that of Kishita et al. (2003). AIC is
defined as )2ln (maximum likelihood) +2 (number of
parameters in the model). In our model that contains
two parameters (kD and dD), the logarithm of maxi-
mum likelihood was –89.63. Hence, we obtain AIC
=–2·(–89.63) +2·2=183.3. Thus, the Wallace model
is slightly superior to our model according to AIC.
Some assumptions involved in our model will not
provide a highly accurate approximation of actual
dispersal.

We did not consider the variability that will emerge in
actual fields, such as variability of wind speed and wind
direction, individual variability of dispersal ability, the
spatial heterogeneity of vegetation over the experimental
field, and the spatial heterogeneity in barriers against
movement such as trees. Such variability will change
both the diffusion coefficient and the rate of settlement
during the movement of each individual. Skalski and
Gilliam (2003) described heterogeneity in a state-struc-
tured framework; during their dispersal, individuals
change their movement states, such as their diffusion
coefficients, in a stochastic manner. Yamamura (2002)
described heterogeneity by assuming that the traveling
duration of organisms follows a gamma distribution; a
gamma distribution is a generalization of an exponential
distribution that was used in this article (Eq. 4). Clark
et al. (1999) used an inverse gamma distribution instead
of a gamma distribution. By assuming that the traveling
duration scaled by the diffusion coefficient follows a
gamma distribution or an inverse gamma distribution,
we can describe the natural dispersal distance under
several kinds of variability including variability in the
diffusion coefficient and the rate of settlement. However,
it will be difficult to solve the aforementioned dilemma
in these general models, since the removal by traps
influences the distribution of dispersal duration in a

complicated manner. Further improvement in the
methodology will be required in this respect.
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